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Abstract— The goal of this paper isto give a short overview
to the complex field of x-ray CT reconstruction methods,
focusing on the main classes of reconstruction methods and
on some of the methods actually in use in modern x-ray CT
systems.

|. INTRODUCTION

Since the origins of x-ray CT (due to the pionegivork
of Hounsfield and Kormack) to present time, tompgia
reconstruction has been one of the most dynamearek
topics of the last forty years. An impressive numbé
scientific publications and meetings has been aal/dod
this research field and the trend is likely to coung.

The goal of this paper is to give an overview te th
complex research field of x-ray CT reconstruction,
focusing on the main classes of reconstruction austh
and on some of the methods actually in use in nmoger
ray CT systems.

The extraordinary evolution of x-ray CT is basedtoa
interconnected and reciprocally challenging devedepts
in systems’ technology, mathematical methods and ne
clinical applications. Because of this we won't sioler

function f (object function) in the(x,y) plane of the
section.

The two parameterg and s univocally specify the line
with equation

1)

in the (x,y) plane and the general formula for the line
integral, known as the Radon transforni(gfy), is:

p6,s) = [[ f(x y)d(xcosd + ysin6 - s)dxdy (2).

Xcosg +ysind=s

The purpose of x-ray CT 2D reconstruction methgds i
calculate f(x,y) given a proper set of measured line
integrals, that means, from a mathematical pointiefv,
to calculate the inverse Radon transform givenfficent
set of samples.

A projection consists of a collection of integrateadues
of f(x,y) taken along a set of straight lines in the plam& a
the projection data set is given by a number ofgetmns
taken with different orientations. Basically, two
geometries have been defined for the sets of litegrals
making a 2D projection: parallel and divergent {an-
beam).

the reconstruction methods in a purely theoretical In parallel geometry (the acquisition geometry wétf

framework, instead, we’ll constantly refer practiaapects
like the specific system geometry, acquisition pcot or
clinical application to which the different methodse
suitable.

We'll start with some basic aspects and with thenfd
definition of the mathematical problem of tomograph
reconstruction in the original 2D geometrical fravek
(section I1).

In section Il we shortly describe the two mainaalthms
for 2D tomographic reconstruction, direct Fouri@F]
and filtered backprojection (FBP) methods. Mostthud
state of the art 2/3D reconstruction methods betonifpe
idea of FBP algorithm.

With the introduction of spiral acquisition geonyetmd
multi-slice  detectors, the acquisition/reconstmitti

processes need to be described in a 3D framework.

Nevertheless, under certain conditions, CT recanstm
methods continue to follow a 2D paradigm. In settlid,

we review the reconstruction methods suitable for
multislice spiral x-ray CT.

II. BASICS OF XRAY CT RECONSTRUCTION

The distribution of the attenuation coefficient @n
transversal section of an object can be descrilsea 2D

generation systems, shown in figure 1), a projectio
p,(S) consists of a collection of line integrals taken

along straight parallel lines in the plane, thatang a
collection ofp(é,s) with constantd ands/[-S/2,S/2] A
parallel projection data set is usually represesteé 2D
matrix, called sinogram, each row of which correxfsto
a value for the parameté® (a parallel projection) and
each column to a value for the paramster

In divergent geometry (the acquisition geometnthofd
generation systems, shown in figure 2) to each langu
position of the focal spot corresponds a fan ofufsc
detector lines (the detector being an array of aete

Fig. 1 Object functiori(x,y) and its parallel projection i@ direction.
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Fig. 4 In Fourier reconstruction, sample pointshaf 2D Fourier
transform of the image are given on a conventipoédr grid.

Fig. 2 Object functiori(x,y) and its divergent projection jfidirection.

elements). Given the ray of focal spot trajectottye

parameterg and ydefine the line of equation
XCcos(B+y) +ysin(B+y) =-rsiny

and each divergent projection is a collection ofeli

integrals taken with constafitand y/[-172,172].

In Radon space, the space of the Radon transform o
f(x,y) a projection data set for a given geometry
corresponds to a set of samples taken over a &pecif
sampling grid. As a consequence, given a set opkam
obtained with a given geometry a different samglecan
be calculated by interpolation. This transformaticalled
rebinning, is commonly performed to obtain a patall
projection sample set given a divergent one.

A fundamental result in tomographic reconstrucisthe
Fourier slice theorem (details and demonstratiom loa
found in [1]):

Theorem 1The Fourier transform of a parallel projection
of an object functiori(x,y) taken at angl® gives a slice of
the two-dimensional Fourier transform fik,y), F(u,v),
subtending an angl@ with theu axis.

In other words, the 1D Fourier transfofy o) of the
parallel projectionpds), gives the values df(u,v) along
line BB in figure 3.

points in the frequency domain and the object fionct
f(x,y) could be recovered by 2D inverse Fourier
transformingF(u,v).

Fourier reconstruction methods (also known as tlirec
ourier or Fourier based methods) follow directtgnfi
his ideal procedure, adapted to the discrete [@)s8ince
only a finite number of projections and samples per
projection are takenF(u,v) is known just on a finite
number of points along a finite number of radiaeB (fig.
4) and, in order to obtain an approximatiorf(gfy) by 2D
inverse Fourier transform oF(u,v), first we have to
interpolate from the radial points to the points an
Cartesian grid.

Unfortunately, the results obtained with such aigtrt
method suffer from artefacts due to interpolation i
Fourier space and aliasing. Nevertheless, duestdo
computational complexity (N“logN)) this method has
been object of research and various techniques bese
proposed in order to improve its performance. Some
techniques are based on peculiar sampling schepwdar—
interleaved grid [3], polar squared grid [2], limag [4]-
while some others take advantage on recent develapm
in the calculation of NUFFT (Non Uniform Fast Faarri
Transform) [5], allowing for the 2D inverse Fourier
transform of F(u,v) directly from its radial samples.
Especially these last methods have shown a perfarena
equivalent to the one of the more widely accept8® F
algorithm with a considerable saving in computaion
time. The fact that, in principle, these algorithare not
suitable for reconstruction from divergent projens
doesn’t seem to be an obstacle anymore sinceyicase,
2D reconstruction is performed on interpolated datter
longitudinal interpolation), being possible to ckeoa

[ll. 2D X-RAY CT RECONSTRUCTION

The Fourier slice theorem suggests a simple waple

the reconstruction problem. Taking parallel prapets of
the object functionf at anglesé, 6 .. 8, and Fourier
transforming each of them, we obtain the 2D Fourier
transform of the object functidf(u,v) onn radial lines. In
ideal conditions (infinite number of projections dan
samples per projectionfr(u,v) would be known at all

- parallel geometry resampling grid. Moreover, it heen
demonstrated that, taking advantage of NUFFT, tlirec
\ Fourier methods can be applied directly on divergen
\ v projections [6].
For historical and practical reasons, the most essfal
\ /@6 2D reconstruction method (chosen by all the
\ > manufacturers) is FBP. The reconstruction formala loe
\e’/‘ . mathematically derived [1], but the method can diso
introduced in a very intuitive fashion.
If we smear back (backproject) the measured samples
space domain frequency domain along the direction with which they were taken, ateain
Fig. 3 Graphic representation of Fourier slice teaostatement. a blurred version of the image we were supposegeto
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This problem is solved by filtering (with a ramitdi) the
projections before backprojecting them. This methad

be applied to divergent geometry by adding addiion
weighting to the projections and in the backpragect
process.

Despite their higher computational complexig(N®)),

FBP methods have been preferred over DF methods

because they offer the possibility to perform the mm

acquisition and reconstruction processes at the dane, f > E

to adlus_t image quality l?y choosing different (hﬂrd)r Fig. 6 Interpolation scheme in 180°FMI longitudiireterpolation
softer) filters, to be easily extended to new asitjon algorithm [10].

geometries. Nowadays, since reconstruction is away
performed “a posteriori” and the NFFT based DF moéth M ’ ; ~
also need a filtering step, giving the possibittychoose ~ POssibility to retrospectively select image positiand
between softer and harder filters, we can say (iha2D reconstruction increment provides the most sigaiftc

reconstruction) FBP and DF methods have equivalent2dvantage of spiral acquisition. o _
performance. Various different approaches to longitudinal intdgtion

In most applications it's important to limit as nuas  Nave been proposed: 360°180°LI —Linear Interpmiali
possible the number of projections to consider tin t (for single slice acquisition), 360°/180°MLI —Mulice
reconstruction of an image. In case of divergent Linear Interpolation— and 180°MFI — Multislice [Eited
projections we just need a set of projections poeading Interpolation— (for multislice acquisition). In fige 6 the

to a focal spot rotation arc o (beingl” the fan angle),  Ntérpolation scheme of the 180°FMI longitudinal
called short scan data set [7]. Both FBP and DF interpolation algorithm is represented. In thisoaithm

algorithms can be modified in order to perform &€ selected for interpolation (filtered) all thangples
reconstruction based on short scan data sets. corresponding to a longitudinal window of pre-defin

Moreover, it has been demonstrated that an objaict p width. Slice thickness can be altered by settirfteidint

can be reconstructed exactly if it “sees” a scath pa [fiter widths [10]. _ _
segment of angular range Thus, if we are interested in For higher number of slices (wider cone angle),eifrer

the reconstruction in just a limited ROI, an evemalier associated with longitudinal interpolation cannoé b
data set is sufficient (super short scan). Specific neglected anymore. A number of algorithms _have been
reconstruction algorithms have been developed todeveloped taking into account the focal spot tiajgcand

reconstruct ROl images based on a super shortdatan the cone angle of different slices. Basically, hese
set [8, 9] algorithms 2D reconstruction is performed overedlt

image planes (fig. 7), then, the multiple tiltedaipes are
interpolated (filtrated) to obtain axial images.eTtilted

position, then, 2D reconstruction is performed. The

IV. SPIRAL CT: FROM2 TO 3D RECONSTRUCTION

Multiple
oblique
images

With the introduction of multislice spiral acquisit,
although the acquisition geometry is defined in 8i2
space, up to a small number of slices (tipicallyirBage
reconstruction is still managed as a 2D reconstmct
problem. The spiral acquisition geometry is defined
introducing a new parameter, called pitch, whichthe
ratio of table movement per rotation and collimator
aperture.

An additional processing step called longitudinal
interpolation allows for the synthesis of a cormsisplanar
data set from the spiral data for an arbitrary ienag

-axis filter “

Axial images

Fig. 7 2D reconstruction over tilted planes andjlardinal fiter to
obtain axial images (www.impactscan.org).
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Fig. 5 Focal spot rotation arc corresponding tagges short scan data

set Fig. 8 In ASSR algoritm the image plane is seleatearder to

minimize the reconstruction error [11].

WMISI2007



804

Fig. 9 Reconstrucéo de imagens parciais in SMP&itign [14].

planes are selected in order to better fit the segrof
trajectory used for the reconstruction. Technigliks
ASSR —Advanced Single Slice Rebinning— and AMPR —
Adapted Multiple Plane Reconstruction— follow this
strategy [12, 13].

In the SMPR -Segmented Multiple Plane
Reconstruction— technique [14], short segmentsooélf
spot trajectory are considered. For each of thegaments
the data corresponding to each detector sliceedri@med
to a small set of parallel projections, which alterfed and
backprojected to the image plane that better figsfocal
spot trajectory and the cone angle of the deteslioe,
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Due to space constraints, we have limited our sty
the most important methods.

3.

4.

5.

obtaining a set of incomplete images on planes with?’-

different inclination (fig. 9). Finally, in ordeptobtain an
axial image, the partial images have to be longitaity
interpolated and combined. This or similar stragegare
used in some modern 64 slices CT systems (Sier@dt]s,
Another possible reconstruction strategy,
followed by manufacturers like Philips and Toshiina
their state of the art multi slice CT systems, ullyf 3D
reconstruction. These algorithms are extension haf t
Feldkamp algorithm, an approximate 3D filtered
backprojection algorithm developed fosequential
scanning [15], to multislice spiral scanning. Withis
approach, the measurement rays are first weighted a
filtered (similarly to what happen in 2D filtered
backprojection for divergent geometry) and then
backprojected into a 3Dvolume along the lines of
measurement, accounting in this way tloeir cone-beam
geometry. Examples of Feldkamp type 3D filtered
backprojection algorithms for spiral trajectory §t6-18].
Three-dimensional  backprojection has a  high
computational complexityd{N*)) and requires dedicated
hardware to reduce image-reconstructiores.

CONCLUSIONS

We presented a short overview on x-ray CT
reconstruction methods. Although 2D acquisition
geometries are almost outdated, 2D reconstructicstili
in use since, due to the high computational conitylet
3D reconstruction algorithms, most of the recorcdiom
methods continue to follow one of the paradigms:
e sinogram synthesis -> 2D axial
reconstruction
e 2D tilted plane reconstruction -> axial plane
image interpolation.

plane
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