# Aplicação do método FDTD para simulação da interacção de ondas electromagnéticas com tecidos biológicos.

Francisco Nabais Ferro<sup>1</sup>, Guilherme Taveira Pinto<sup>1</sup>, Pedro Pinho<sup>1</sup> e J. F. Rocha Pereira<sup>2</sup>

# <sup>1</sup> Departamento de Engenharia de Electrónica das Telecomunicações e de Computadores - Instituto Superior de Engenharia de Lisboa

*Resumo:* Simulações da Taxa de Absorção Específica (SAR) recorrendo ao método FDTD (Finite Difference Time Domain). O FDTD é um dos métodos mais utilizados em electromagnetismo computacional, e é bastante útil no estudo da propagação de ondas electromagnéticas e das interferências das mesmas com diferentes materiais. Esta constatação surgiu ao longo do desenvolvimento de uma ferramenta pedagógica baseada no método FDTD. Apresentam-se neste trabalho, alguns dos resultados das simulações obtidos com a ferramenta desenvolvida, onde se pode verificar a quantidade de SAR (Specific Absorption Rate) absorvida pelos tecidos duma cabeça humana exposta à radiação provocada por uma fonte com frequências de 900 e 1800 MHz, pois são duas frequências típicas de sistemas de comunicações móveis.

#### I. INTRODUÇÃO

O electromagnetismo computacional é nos dias de hoje uma ferramenta bastante útil no estudo de fenómenos de propagação de ondas electromagnéticas, não só na área das telecomunicações, mas também nas áreas da medicina e da biologia, nomeadamente para o estudo das interferências provocadas pela propagação de ondas electromagnéticas em tecidos biológicos de seres humanos.

0 electromagnetismo computacional abrange um métodos permitem resolver conjunto de que numericamente as equações de Maxwell, e consequentemente simular os fenómenos de radiação e propagação que lhes estão associados.

Com a crescente evolução do desempenho dos computadores pessoais, torna-se cada vez mais viável a aplicação do electromagnetismo computacional para a determinação dos comportamentos electromagnéticos de diferentes sistemas, sem que seja necessário recorrer a supercomputadores. Como exemplos de aplicações podemos encontrar simulações para a análise das interferências entre ondas electromagnéticas e tecidos humanos (e.g. telefones móveis, sistemas médicos de radioterapia e análise), projectos de antenas, projectos de placas de circuitos impressos, conectores e cabos. A simulação de fenómenos electromagnéticos através deste processo permite efectuar simulações bastante fiáveis. Assim sendo, o electromagnetismo computacional revelou-se nos últimos tempos como uma ferramenta bastante poderosa para estudos de fenómenos electromagnéticos.

Dentro dos métodos existentes nesta área, o FDTD distingue-se nitidamente como um dos mais poderosos, principalmente pelas suas capacidades de visualização dos resultados obtidos e pela sua fácil implementação. O FDTD teve um crescimento exponencial na última década, existindo hoje em dia um número bastante vasto de artigos escritos sobre aplicações que utilizam este método.

O método FDTD tem sido utilizado para simular diversos fenómenos de propagação associados a sistemas de telecomunicações, tais como a propagação, a reflexão e a transmissão de ondas electromagnéticas. Além destes fenómenos, o FDTD é também muito utilizado hoje em dia, no estudo de fenómenos biológicos de interacção dos campos electromagnéticos com tecidos humanos através de simulações.

Refiram-se por exemplo os estudos sobre os níveis de SAR verificados nos tecidos humanos devido à radiação GSM [1], estudos sobre a detecção de tumores malignos [2] e de cancro da mama [3], estudos sobre os efeitos da exposição de células biológicas a impulsos electromagnéticos [4] e simulação de tratamentos de células cancerígenas por efeitos de hipertermia [5].

#### II. O FDTD

O FDTD é um método numérico usado para efectuar o cálculo de campos electromagnéticos, recorrendo a equações discretizadas no espaço e no tempo. O FDTD é utilizado na resolução de problemas electromagnéticos, na sua maioria complexos, onde as soluções analíticas são inviáveis e é portanto necessário, recorrer a um método numérico de cálculo. Este método permite resolver diversos tipos de problemas, como por exemplo, alguns dos que foram atrás referidos.

Originalmente desenvolvido por Kane Yee [6] em 1966, o método FDTD consiste em resolver as equações de Maxwell no domínio do tempo e num determinado espaço pré-definido, calculando as derivadas em ordem ao tempo e em ordem ao espaço, através de diferenças finitas obtidas pela definição básica de derivada duma função

#### A. As equações de Maxwell

As equações de Maxwell na sua forma diferencial são dadas por:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{1}$$

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}_s \tag{2}$$

$$\nabla . \vec{D} = \rho \tag{3}$$

$$\nabla . \vec{B} = 0 \tag{4}$$

Para o caso de materiais homogéneos, isotrópicos e lineares, é possível relacionar  $\vec{B}$  com  $\vec{H}$  e  $\vec{D}$  com  $\vec{E}$  da seguinte forma [7]:

$$\vec{B} = \mu \vec{H}$$
(5)

$$\vec{D} = \varepsilon \vec{E}$$
(6)

Onde  $\mu$  representa a permeabilidade magnética em [H/m] e  $\epsilon$  representa a permitividade eléctrica em [F/m].

Analogamente, se tivermos em conta as perdas eléctricas é possível relacionar  $\vec{J}_s$  com  $\vec{E}$  da seguinte forma:

$$\vec{J}_{s} = \sigma \vec{E} \tag{7}$$

Onde  $\sigma$  representa a condutividade eléctrica em [S/m]. Substituindo as relações enunciadas de (5) a (7), nas equações (1) e (2) é possível escrever as equações de Maxwell na sua forma diferencial da seguinte forma:

$$\nabla \times \vec{E} = -\mu \cdot \frac{\partial \vec{H}}{\partial t}$$
(8)

$$\nabla \times \vec{H} = -\varepsilon \cdot \frac{\partial \vec{E}}{\partial t} + \sigma \cdot \vec{E}$$
(9)

Utilizando um sistema de coordenadas rectangular, obtêm-se as equações base do algoritmo FDTD, representadas pelo seguinte conjunto de equações:

$$\frac{\partial H_x}{\partial t} = \frac{1}{\mu} \left( \frac{\partial E_y}{\partial z} - \frac{\partial E_z}{\partial y} \right)$$
(10)

$$\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \left( \frac{\partial E_z}{\partial x} - \frac{\partial E_x}{\partial z} \right)$$
(11)

$$\frac{\partial H_z}{\partial t} = \frac{1}{\mu} \left( \frac{\partial E_x}{\partial y} - \frac{\partial E_y}{\partial x} \right)$$
(12)

$$\frac{\partial E_x}{\partial t} = \frac{1}{\varepsilon} \left( \frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - \sigma E_x \right)$$
(13)

$$\frac{\partial E_{y}}{\partial t} = \frac{1}{\varepsilon} \left( \frac{\partial H_{x}}{\partial z} - \frac{\partial H_{z}}{\partial x} - \sigma E_{y} \right)$$
(14)

$$\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon} \left( \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} - \sigma E_z \right)$$
(15)

#### B O algoritmo de Kane Yee

Kane Yee apresentou um conjunto de equações diferença para a resolução das equações de Maxwell na sua forma diferencial. Yee definiu uma função do tempo e do espaço calculada num ponto genérico da grelha pré definida, como sendo:

$$F^{n}(i, j, k) = F(i\Delta x, j\Delta y, k\Delta z, n\Delta t)$$
(16)

onde i, j e k são inteiros;  $\Delta x$ ,  $\Delta y$  e  $\Delta z$  são as dimensões das células segundo as direcções dos eixos coordenados;  $\Delta t$  é o incremento no tempo, assumido uniforme em todo o intervalo de observação, e *n* um inteiro.

Se aplicarmos a definição de derivada num ponto às equações de Maxwell na sua forma diferencial, obteremos as equações base do método FDTD. Utilizando a equação (10) e aplicando a definição de derivada num ponto, pode-se mostrar que [8], o campo magnético é dado por:

$$H_{x}^{n+\frac{1}{2}}(i,j,k) = \left(\frac{1 - \frac{\rho'_{i,j,k} \cdot \Delta t}{2 \cdot \mu_{i,j,k}}}{1 + \frac{\rho'_{i,j,k} \cdot \Delta t}{2 \cdot \mu_{i,j,k}}}\right) H_{x}^{n-\frac{1}{2}}(i,j,k) +$$

$$\left(\frac{\Delta t}{\mu_{i,j,k}}\right) \left(\frac{\frac{E_{y}^{n}(i,j,k+1/2) - E_{y}^{n}(i,j,k-1/2)}{\Delta z}}{-\frac{E_{z}^{n}(i,j+1/2,k) - E_{z}^{n}(i,j-1/2,k)}{\Delta y}}\right)$$
(17)

E o campo eléctrico por:

$$E_{z}^{n+1}(i, j, k) = \left(\frac{1 - \frac{\sigma_{i,j,k} \cdot \Delta t}{2 \cdot \varepsilon_{i,j,k}}}{1 + \frac{\sigma_{i,j,k} \cdot \Delta t}{2 \cdot \varepsilon_{i,j,k}}}\right) E_{z}^{n}(i, j, k) +$$

$$\left(\frac{\frac{\Delta t}{\varepsilon_{i,j,k}}}{1 + \frac{\sigma_{i,j,k} \cdot \Delta t}{2 \cdot \varepsilon_{i,j,k}}}\right) \left(\frac{H_{y}^{n+1/2}(i+1/2, j, k) - H_{y}^{n+1/2}(i-1/2, j, k)}{\Delta x} - \frac{H_{x}^{n+1/2}(i, j+1/2, k) - E_{z}^{n+1/2}(i, j-1/2, k)}{\Delta y}\right)$$
(18)

O tamanho das células e o valor do incremento temporal estão relacionados através do limite de Courant, que garante a estabilidade do algoritmo e que é dado por [8]:

$$\Delta t \le \frac{1}{c_0 \cdot \sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}}}$$
(19)

Pela análise das equações (18) e (19), conclui-se que o cálculo de qualquer componente do campo é dependente apenas do seu valor no instante anterior e dos valores das componentes do outro campo em pontos adjacentes no instante imediatamente anterior.

Este método foi utilizado pelos autores, para a implementação de uma ferramenta pedagógica [9] utilizada para a apresentação de resultados neste documento.

## III. FERRAMENTA PEDAGÓGICA FDTD

A ferramenta pedagógica FDTD desenvolvida em [9], é um *software* baseado no método FDTD, para apoio pedagógico a disciplinas da área de propagação e radiação. A ferramenta permite simular diversos fenómenos da propagação de ondas electromagnéticas e das suas interferências com diferentes materiais, através da interacção com o utilizador e da possibilidade de definição das propriedades electromagnéticas dos materiais presentes na área de simulação. A aplicação permite efectuar simulações em espaços unidimensionais ou bidimensionais, possibilitando no caso de espaços bidimensionais, a visualização das simulações a uma, a duas ou a três dimensões. Em qualquer um dos casos, a apresentação dos resultados simulados é dinâmica.

Uma das possibilidades desta ferramenta é a simulação para a obtenção dos níveis de SAR numa cabeça humana devido à radiação proveniente de uma fonte com frequências de 900 e 1800 MHz.

O modelo de cabeça humana utilizado na aplicação foi baseado na imagem médica [1] de uma ressonância magnética, representada no canto superior esquerdo da Figura 1. Considerando que as diferentes zonas da cabeça humana são constituídas por materiais homogéneos obtémse o modelo utilizado para a simulação FDTD, representado no canto superior direito da Figura 1. Foi assim possível, assumir a discretização em células FDTD do corte sagital duma cabeça humana apresentada no canto inferior direito da Figura 1.



Figura 1- Corte Sagital de uma cabeça humana e respectivos tecidos constituintes de cada área.

A aplicação disponibiliza três tipos diferentes de cortes para simulação da cabeça humana: Corte Frontal, Superior e Sagital.

Apresentam-se na Figura 3 o preenchimento da área de simulação para cada um destes casos.



Figura 2 – Preenchimento da área de simulação para os três tipos de cortes de cabeça humana existentes na aplicação

A aplicação desenvolvida permite efectuar simulações para as frequências de 900 e 1800 MHz, pois são frequências típicas de sistemas de comunicações móveis, nomeadamente da norma GSM.

As propriedades dos diferentes tecidos da cabeça humana são:

- Permitividade Eléctrica Relativa ε<sub>r</sub>;
- Condutividade Eléctrica σ;
- Massa Volúmica ρ;

Apresentam-se nas tabelas 1 e 2, os valores destas propriedades dos tecidos humanos para as duas frequências utilizadas.

O valor da SAR quantifica a potência absorvida por unidade de massa e é obtido através da equação (21) :

$$SAR = \frac{\sigma}{2 \cdot \rho} \cdot \left| E_i \right|^2 \tag{21}$$

Onde  $\sigma e \rho$  são os parâmetros condutividade eléctrica e densidade de massa dos tecidos e  $E_i$  é o valor do campo eléctrico numa determinada célula da grelha FDTD.

Tabela 1- Propriedades electromagnéticas dos tecidos da cabeça para 900 MHz [10]

| Tecido      | $(\varepsilon_r)$ | σ [S/m] | ρ [kg/l] |
|-------------|-------------------|---------|----------|
| Pele/Gordur | 23.00             | 0.630   | 1.000    |
| а           | 0                 |         |          |
| Músculo     | 59.00             | 1.260   | 1.000    |
|             | 0                 |         |          |
| Osso        | 5.400             | 0.045   | 1.200    |
| Cérebro     | 51.00             | 1.460   | 1.050    |

Tabela 2 - Propriedades electromagnéticas dos tecidos da cabeça para 1800 MHz [10]

| Tecido       | $(\varepsilon_r)$ | σ [S/m] | ρ [kg/l] |
|--------------|-------------------|---------|----------|
| Pele/Gordura | 38.870            | 1.190   | 1.000    |
| Músculo      | 59.370            | 2.040   | 1.000    |
| Osso         | 11.500            | 0.230   | 1.200    |
| Cérebro      | 43.54             | 1.150   | 1.050    |

### IV. SIMULAÇÕES DE SAR

Apresentam-se de seguida, os resultados de algumas simulações efectuadas na ferramenta pedagógica FDTD [9]. Estas simulações representam os níveis de SAR numa cabeça humana devido à radiação proveniente de uma fonte com frequências de 900 e 1800 MHz.

#### **Corte Superior (Time Step = 150):**



Figura 3 - Simulação da SAR na cabeça humana (corte superior) para 900 MHz e 1800 MHz (Time step=150)





Figura 4 - Simulação da SAR na cabeça humana (corte superior) para 900 MHz e 1800 MHz (Time step=320)

**Corte Frontal (Time Step = 150):** 





## **Corte Frontal (Time Step = 320):**





#### **Corte Sagital (Time Step = 150):**



Figura 7 - Simulação da SAR na cabeça humana (corte sagital) para 900 MHz e 1800 MHz (Time step=150)

# **Corte Sagital (Time Step = 320):**



Figura 8 - Simulação da SAR na cabeça humana (corte sagital) para 900 MHz e 1800 MHz (Time step=320)

## V. CONCLUSÕES

Através da análise das figuras 3 a 8, podemos verificar a utilidade do método FDTD. Os resultados apresentados pretendem exemplificar o nível de penetração das ondas electromagnéticas na cabeça humana, e resultam da aplicação directa das propriedades electromagnéticas dos tecidos humanos às diferentes zonas de tecidos da cabeça, dispostas na grelha FDTD com uma geometria semelhante à duma cabeça humana.

Verifica-se que existe uma maior penetração da quantidade de SAR na cabeça humana para o caso da fonte de 1800 MHz, quando comparado com a fonte de 900 MHz. Esta penetração no caso dos 1800 MHz, é mais elevada em qualquer um dos cortes de cabeça humana utilizados.

Verifica-se ainda que a penetração da SAR tem tendência a aumentar com o tempo de exposição, tal como se pode verificar pelas diferenças existentes entre as imagens capturadas nos *time steps* 150 e 320. Nota-se ainda, que os maiores valores de SAR estão concentrados nos tecidos periféricos do cérebro humano, do lado que está exposto à radiação da fonte.

#### REFERÊNCIAS

- A. A. de Salles, C. R. Fernández e M. Bonadiman, "Simulações da SAR na cabeça e antenas planares para telefones móveis", em Revista Brasileira de Engenharia Biomédica, v. 19, nº2, p. 77-90, Agosto de 2003.
- [2] Xu Li, Shakti K. Davis, Susan C. Hagness, Daniel W. van der Weide, e Barry D. Van Veen, "Microwave Imaging via Space-Time Beamforming: Experimental Investigation of Tumor Detection in Multilayer Breast Phantoms", em IEEE transactions on microwave theory and techniques, vol. 52, no. 8, Agosto de 2004

- [3] Shakti K. Davis, Henri Tandradinata, Susan C. Hagness, and Barry D. Van Veen, "Ultrawideband Microwave Breast Cancer Detection: A Detection-Theoretic Approach Using the Generalized Likelihood Ratio Test", em IEEE transactions on biomedical engineering, vol. 52, no. 7, Julho de 2005
- [4] Zhen Ji, Susan C. Hagness, John H. Booske, Satnam Mathur and Martin L. Meltz, "FDTD Analysis of a Gigahertz TEM Cell for Ultra-wideband Pulse Exposure Studies of Biological Specimens", IEEE transactions on biomedical engineering, vol. 53, no. 5, Maio de 2006
- [5] Mark Converse, Essex J. Bond, Barry D. Van Veen, e Susan C. Hagness, "A Computational Study of Ultra-Wideband Versus Narrowband Microwave Hyperthermia for Breast Cancer Treatment", em IEEE transactions on microwave theory and techniques, vol. 54, no. 5, Maio de 2006
- K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media", IEEE Transactions on Antennas and Propagation, vol. AP-14, no. 3, pp. 302—307, 1966.
- [7] Pedro Pinho, "Antena para terminal móvel para a banda de frequência de 1.91 a 2.2 GHz", Tese de Mestrado, Universidade de Aveiro, 2000.
- [8] Allen Taflove e Susan C. Hagness. Computational Electrodynamics – The Finite- Difference Time-Domain Method, Artech House, 3<sup>a</sup>. Edição, 2005.
- [9] Francisco Nabais Ferro e Guilherme Taveira Pinto, "Ferramenta Pedagógica FDTD", Projecto Final de Curso, Instituto Superior de Engenharia de Lisboa, Setembro de 2006.
- [10] S. Khalatbari, D. Sardari, A. A. Mirzaee, e H. A. Sadafi, "Calculating SAR in Two Models of the Human Head Exposed to Mobile Phones Radiations at 900 and 1800MHz", em Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29.