
REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008

Abstract - This paper presents quality of service
mechanisms, based on the NSIS (Next Steps In Signaling)
protocol. For that, it was implemented a testbed with NSIS
running through IPv6. The network’s QoS was measured by
the number of drops, for each flow (either QoS or Best Effort
traffic), occurred in routers. The first experiment shows the
captured packets during a node association and request for
QoS, namely a GIST session and a QoS NSLP session. The
second experiment illustrates a more realistic scenario, where
different flows with different QoS parameters and Best
Effort traffic, were simultaneously sent through a path across
different networks. The experimental study addressed in this
work helped on the enhancement of NSIS developments for
IPv6 environments.
.

I. INTRODUCTION

One of the Internet main features, on its creation, was
that all packets have the same treatment. This is also
known as the Best Effort paradigm, where packets are
forwarded in the routers based on a First Come First
Served politic. Therefore, no arrangements were made to
guarantee bandwidth, delays or any other services
summarized under the term Quality of Service (QoS).
However, due to the explosive growth of the Internet, and
to the exponential use of multimedia services, like VoIP,
QoS mechanisms are being proposed and developed. One
of these brought the ability of creating reservations
between nodes for carrying the QoS information along the
data path, providing routers with the particular QoS needs
of each flow. Particularly, the design of the Resource
reSerVation Protocol (RSVP) by Internet Engineering
Task Force (IETF) fit these needs for a while. However,
RSVP turned out to suffer from flexibility to meet today’s
requirements [6].
Meanwhile, new signaling mechanisms started rising up,

and in 2001 the Next Steps In Signaling (NSIS) [9] was
formed to create a new signaling framework, capable of
supporting future needs. This working group focused
primarily on the architecture and design of a new signaling
protocol for the Internet. From the beginning of these
discussions, new implementations were created and used
to test and validate the feasibility of the designs proposed.
As a matter of fact, students at the University of Kentucky
and University of Göettingen completed their
implementations based on the early drafts, with modular
interfaces of generic signaling services NSIS Signaling
Layer Protocols (NSLP). There are known implementation

activities at Siemens Roke Manner Research, NEC, Nokia,
Alcatel and University of Coimbra; Ericsson, the
University of Karlsruhe, the University of Twente, and
Samsung are working towards independent
implementations of QoS NSLP. In this paper we used the
University of Goettingen implementation, since it seamed
to be the most functional and robust. We implemented a
testbed with NSIS running through IPv6. The tests
performed had the purpose of seeing in action not only the
NSIS signaling mechanisms, but also the captured packets,
nodes associations, as well as the QoS mechanisms
implemented in the network, in order to provide a solid
NSIS background in future work.

II. BACKGROUND

A. NSIS basics

As a signaling protocol, NSIS focus on the manipulation
of state in nodes along the data path, taken by a data flow.
Here, data flow means a number of packets with the same
source and destination address, marked with the same flow
identifier. It is assumed that the data path between nodes is
defined by routing protocols and so, NSIS works in a
seamless way, interacting with all nodes along the data
path.
To get the flexibility needed to meet today’s

requirements, NSIS splits itself in two layers: the first one
is a lower level layer, responsible for the transport of
signaling packets; the second is an upper level layer,
responsible for the signaling between the intervenient
nodes.
NSIS was designed to support many signaling

applications that manipulate states in the NSIS nodes
along the data path. Note that some nodes may not support
NSIS and, as a consequence of that, two NSIS neighbours
can have one or more nodes between them. Therefore, the
NSIS Initiator (NI) starts the signaling process, while the
others NSIS Entities (NE) along the data path intercept
and forward the messages until they reach the NSIS
Receiver (NR).

B. NSIS main principles

NSIS, as said before, splits itself in two protocol layers.
The first of them is called NSIS Transport Layer Protocol
(NTLP) and insures the transport of all signaling messages
between all nodes. That is possible because NTLP is
primarily composed of a specialized messaging layer,

QoS in 4G scenarios using NSIS protocol

Fábio Ferreira, Susana Sargento, Rui L. Aguiar

REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008

denoted as General Internet Signaling Transport (GIST).
GIST is responsible for the discovery of signaling aware
nodes along a flow path, as well as for the maintenance of
transport layer connection along the discovered paths, and
operates on top of existing transport protocols (TCP,
UDP, SCTP, DCCP or any other one).
The second is denoted as NSIS Signaling Layer Protocol

(NSLP) and deals with signalling application-specific
functionality. NSLP refers to actual signaling operation or
signaling applications like QoS NSLP (used for QoS
reservation) and NAT/FW-NSLP.
The concept of splitting NSIS in two layers makes itself

more generic, extensible and flexible, since each layer has
its responsibility, and together they provide its
functionality.
Unlike RSVP, the NSIS decoupling of peer discovery

from the signaling message transport mechanism makes
possible the use of standard security protocols or transport
layer protocols. That is done by introducing a discovery
component in NTLP, which can rely on IP router alert
option or other approaches, such as routing tables.
In the other hand, with the creation of a session identifier

is possible to identify a signaling session and signaling
state, independent of a flow identifier.
Furthermore, NSIS signaling is applicable in different

parts of the Internet, as well as may be triggered in
different ways, facts that allow the signaling to be initiated
and terminated in different parts of the network, such as
end hosts, domain boundaries or interior routers. Thus,
NSIS protocol offers support for many signaling
exchanges: end-to-end (performed between end hosts),
edge-to-edge (performed between boundary nodes of the
same domain) and end-to-edge (host-to-network
scenarios).

III. NSIS TRANSPORT LAYER PROTOCOLS (NTLP)

The functionality of NTLP is based on the following
principle: its mechanisms will only operate on its
neighbour NSIS Entities (NE). Thus, NTLP consists on a
set of hop-by-hop protocols.
Taking this in consideration, its functional mechanism

can be described in the following: when a certain NE is
ready to send a signaling message, delivers it to NTLP
with its data flow information. Therefore, it is the NTLP
responsibility to deliver it to the next NE in the data path.
From the perspective of a NE that receives a signaling
message, one of two things can happen: 1) NTLP forwards
it to the next NE in the data path (case it exists); 2) If an
appropriate local signaling application exists in the NE, it
will receive the message from NTLP. In this last case, the
signaling application will not only process the received
signaling message, but also creates another message to be
sent by NTLP to the next NE.
So, NTLP offers transport-layer services to higher-layer

signaling applications for two purposes: sending/receiving
signaling messages, and exchanging control and feedback
information. Since all messages are treated locally, NTLP

functional mechanism is quite simple, taking in
consideration that operations such as endpoints discovery,
security and NAT translations are no longer required.

A. GIST (General Internet Signaling Transport)

GIST has two goals: NE’s discovery along the data path
and establishing a Message Routing State (MRS) in each
session. Instead of creating a new transport protocol, GIST
reuses existing transport and security protocols, in order to
provide a universal message transport service. As a soft-
state protocol, GIST is responsible for the creation and
maintenance of two different states, both related to
signaling transport: a per-flow message routing state for
managing the processing of outgoing messages, and a
message association state for managing per-peer state
associated with connection mode messaging to a particular
peer. This consists of signaling destination address,
protocol and port numbers, internal protocol configuration
and state information. Besides information about its
neighbour NE, GIST also maintains certain message
routing information such as the flow identifier, the NSLP
type and session identifier, to uniquely identify the
signaling application layer session for a flow.
GIST can operate in two modes: datagram or

connection. While the first one uses an unreliable
unsecured datagram transport mechanism (taking UDP as
a first choice), the second uses any stream or message-
oriented transport protocol (being TCP the first choice).
Both modes can be used in the different nodes that
compose the data path, without coordination or manual
configuration, allowing the use of datagram mode at the
edges of the network and connection mode in its core.

B. GIST Messages:

GIST defines 6 different messages.
The GIST-QUERY is always sent before any association

between nodes, to test if the destiny node can or cannot
proceed to the message association. This message is only
sent in datagram mode and must include a Stack Proposal.
Since it always elicits for a response, the FLAG R must be
set (R=1).
The GIST-RESPONSE is present on datagram or

connection mode. However, in the first case it is necessary
to include a Responder Cookie, as well as its own Stack
Proposal and Configuration Data. It must echo the
Message Routing Information (MRI) (with inverted
direction) Session ID (SID) and Query-Cookie of the
Query.
The GIST-CONFIRM may be sent in datagram or

connection mode (if a messaging association has been
reused). It must echo the MRI (with inverted direction)
SID and Responder-Cookie if the Response carried one.
A plain GIST-DATA message, in the other hand,

contains no control objects, but only the MRI and SID
associated with the NSLP data being transferred.
The GIST-ERROR message goal is to report a problem

occurred at the GIST level. In datagram mode, this

REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008

message includes a Network Layer Information object for
the originator of the error message.
 Finally, the GIST-HA-HELLO message is sent

only in Connection Mode, in order to indicate that a node
wishes to keep a messaging association open [5].

C. Security in the 3-Handshake

In order to prevent from several possible attacks, GIST
uses a cookie mechanism. It starts with the Querying node
inserting a cookie into the Query message. This cookie
will be echoed by the Responder Node, which will also
add its own cookie. This last cookie will be included in the
confirm message, as shown below:

Figure 1 – GIST: MRS setup

This mechanism is not only a way of transferring
information between nodes with authentication, but also
prevents against spoofing of the Query, Response and
Confirm messages, since the hacker would face the need to
guess the cookie.

IV. QOS SIGNALING APPLICATION PROTOCOL

One of the elementary NSIS principles is that all
signaling applications use the generic functionality
provided earlier by the NTLP. In a NSIS node, the request
for QoS may be initiated either by network management or
by a local application request, initiated by a user
application. Only messages related to QoS are passed up
to the QoS NSLP processing module. This signaling
application can signal for any QoS model, namely Intserv
or Diffserv. Reservation-specific parameters, such as
available bandwidth and token bucket sizes, are
encapsulated in a QSPEC object, and then carried from
one QoS NSLP node to another. These parameters ensure
some degree of interoperability in several QoS Models,
providing a common language to be re-used.
In each QoS NSLP node, it is present a RMF (Resource

Management Function) responsible for handling the QoS
requests, specifically the QSPEC. There is also a local
QoS Model that describes how the RMF should interpret
the QSPEC as well as how to grant and configure the
resource. In the other hand, the grant processing involves
two additional local decision modules, namely policy
control and admission control. In the end, the QoS NSLP
node may resort to acknowledge messages to indicate that

the required resources have been correctly configured.
These messages are unidirectional and the QoS NSLP
node may propagate the resource request further along the
path towards the data receiver.

A. QoS NSLP messages:

The QoS NSLP is a soft state protocol and defines four
different types of messages. These are:
The RESERVE message, unlike all the other QoS NSLP

messages, manipulates QoS NSLP reservation state, by
creating, modifying, refreshing or removing it.
The QUERY message, without making a reservation,

requests information about the data path. This can be used
to “probe” the network for path characteristics, either for
support of certain QoS models or for receiver-initiated
reservations.
The RESPONSE message provides information about the

result of the QUERY message.
Finally, the NOTIFY message provides information to a

QoS NSLP node, differing from a RESPONSE message in
the particular fact that it is sent asynchronously and need
not refer to any peculiar state or previously received
message. Therefore, the information conveyed by a
NOTIFY message is typically related to error conditions.
Note that, unlike RSVP, QoS NSLP messages are sent

NSIS peer-to-NSIS peer, and support both sender initiated
and receiver initiated reservations.

V. TESTBED IMPLEMENTATION

In order to observe NSIS functionality, it was built a
testbed using University of Goettingen NSIS
implementation [1]. The used testbed is presented in figure
2.
In order to differentiate traffic, this implementation uses

IPtables or IP6tables marking, corresponding to IPv4 or
IPv6 addressing, respectively. However, this strategy has
never turned out to be functional when using IPv6
addressing, since all incoming traffic in routers was
recognized as unclassified traffic. In this sense, the source
code was changed (namely the nsis-0.5.1-
dev/nslp/qos/rmf/IpTablesWrapper.cpp file) to use U32
filters, based on source and destiny IPv6 address, instead
of IP6tables marking. After this modification, as different
flows were classified as Best Effort and QoS traffic, we
could assume that the problem was in the IP6tables
marking. This modified version can be downloaded in
http://hng.av.it.pt/~fferreira/downloads/nsis-0.5.1-
dev_u32.rar.

Figure 2 – Schmatic of the used testbed

REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008

Note that, in both experiments, ‘notebook’ was used as
the QoS NSIS Initiator (QNI) while ‘Acer’ was used as the
QoS NSIS Responder (QNR). IT-757 was responsible for
background traffic generation (also having ‘Acer’ as its
destiny). The ‘Compac’ terminal, used in the last
experiment, was a QNI in a second QoS request to ‘Acer’.
Meanwhile, ‘Towelie’ was elected the network’s

bottleneck, as the maximum overall bandwidth of both the
interfaces was specified to 500kbps. Also, the default
bandwidth requested on a QoS NSLP Reserve is 80 kbps,
so traffic generated in ‘Notebook’ having ‘Acer’ as destiny
(Flow 1) will have the same rate. Finally, the background
traffic rate is 6 Mbps (much greater than the bottleneck
capacity), generated with a Poisson distribution. These
parameters were unchangeable for the following 2
experiments:

• TEST 1 – Simple QoS Request:
After IT-757 starts generating the background traffic

having ‘Acer’ as destiny, ‘Notebook’ makes a QoS request
and starts generating its traffic (Flow 1).

• TEST 2 – Double QoS Request with different
parameters:

Similar to TEST 1, but ‘Compac’ terminal also does a
QoS request and its traffic generation (Flow 2 has a rate of
160 kbps and the QoS request is for a bandwidth of the
same rate).
Note that all traffic (Flow 1, Flow 2 and background) was

generated with Mgen [2]. Also, using bash scripting,
different scripts were created in order to make a QoS
request before generating traffic for the correspondent
flow. Additionally, a clear.sh script was done with the
purpose of clearing qdiscs and classes created on both
routers. The Tcpdump tool was used in ‘Acer’ in order to
capture and control incoming traffic.

In TEST 2, the source code (particularly the file /nsis-
0.5.1-dev/nslp/qos/qos_client.cpp) was changed in
‘Compac’ terminal, so that a reservation with different
parameters could be done.

VI. RESULTS

This section presents the results of each experiment, as
well as their respective details.

A. TEST 1

Using Ethereal – Network Protocol Analyser [3], as well
as the adequate dissectors [4], all packets related to node
association (either transport or signaling layer) were
captured, visualized and presented in the figure below.

Figure 3 – Captured packets in a NSIS Session

While the first 3 captured packets are related to the
transport layer, and therefore use GIST protocol, the last 3
packets are related to signaling for the QoS requested. As
explained before, the node association (transport layer) is
done with the 3-handshake performed with GIST Query-
Response-Confirm messages. In the other hand, the
intervenient nodes negotiate the request for QoS (signaling
layer) with the QoS NSLP Reserve-Notify-Response
messages.
Additionally, in this test it was possible to see in real-

time the different classes created on routers (Figure 4).
Particularly, the existence of class 1:1 root, as well as two
subclasses: Class 1:2 and Class 1:6. While the former
handles with unclassified traffic, the latter handles with
QoS traffic (Flow 1). This explains why there are so many
drops of packets in the first case (Best Effort treatment),
while all packets in the latter subclass are forwarded (QoS
service treatment).

Figure 4 – Different traffic classes on router Towelie (Test 1)

Furthermore, it was possible to see the ‘Acer’ incoming
traffic, as well as the rate of each traffic flow (Figure 5).
At the beginning, background traffic, represented in red,
arrives at a 500kbps rate (maximum overall bandwidth of
the network’s bottleneck: Towelie). However,
approximately 10 seconds later, Flow 1 (with 80 kbps
rate) is started, making background traffic’s rate drop
approximately to 420 kbps.
Two conclusions can be drawn: 1) the QoS treatment

applied to Flow 1 assures that all its packets will arrive to
its destiny as soon as possible; and 2) even more drops of
background traffic will occur in the network’s bottleneck,
router Towelie, as less bandwidth for unclassified traffic is
available in router Towelie, due to the start of Flow 1.

REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008

Figure 5 – Incoming traffic in ‘Acer’ terminal (Test 1)

B. TEST 2

As a new QoS request was made from ‘Compac’ to
‘Acer’, it was possible to see a new traffic subclass created
on both routers, particularly Class 1:7 (Figure 6). Again,
no packets of these classes with QoS treatment were
dropped. However, and as expected, the same did not
happen with Class 1:2 (Best Effort treatment), where a
significant number of drops occurred.

Figure 6 - Different traffic classes on router Towelie (Test 2)

With TCPdump tool it was possible to analyse the per-
flow bandwidth rate for each traffic flow on routers
(Figure 7). In red, Best Effort traffic is send to ‘Acer’ with
a rate of 500kbps (maximum overall bandwidth of router
Towelie). This rate dropped approximately to 420 kbps
with the appearance of Flow 1 (80 kbps), represented in
green. However, about 40 seconds later, Flow 2 (160kbps)
is stated, also with QoS treatment, and due to that,
background traffic’s rate drops again, this time to
approximately 260 kbps.
Twenty seconds later, the green line drops (Flow 1 is

stopped) and due to that, 80kbps more of bandwidth are
now available to unclassified traffic in router Towelie: the
red line will arise that rate. As expected, the same
behaviour will happen with the end of Flow 2: this time

160kbps of bandwidth will become available to
unclassified traffic.

Figure 7 - Incoming traffic in ‘Acer’ terminal (Test 2)

Background traffic’s available bandwidth depends on the
number of QoS flows and its reserved bandwidth.
Therefore, when both QoS flows are active
simultaneously, less bandwidth is available to unclassified
traffic, and more drops will occur. For each instant, the
sum of the rates of the active flows, in that instant, is
always equal to the maximum overall bandwidth of the
network’s bottleneck, router Towelie (500kbps).
TCPdump tool also permitted a different analysis: packet

Inter-arrival time, as shown below on Figure 8. Taking in
consideration that both Flow 1 and Flow 2 (again,
represented in green and blue respectively) have reserved
bandwidth for each, it is expected their inter-arrival time
to be constant. Since Flow 2 has twice the rate of Flow 1,
its inter-arrival time is half the value of the Flow 1.

Figure 8 – Inter-arrival time of each flow

However, the analysis of the background traffic inter-
arrival time may be more complex. Represented in red,
this value is approximately constant until the start of Flow
1. As less bandwidth is available in router Towelie for
unclassified traffic, its inter-arrival time will rise. After the
start of Flow 2, the red line rises even more and becomes

REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008

also uncertain, instead of being approximately straight as
before. Finally, as both Flow 1 and Flow 2 were stopped,
the background traffic’s inter-arrival time successively
decreases.

VII. CONCLUSION AND FUTURE WORK

One of the main goals of these experiments was to
provide QoS mechanisms to a testbed using NSIS protocol
and observe it functionality. As QoS traffic is forwarded in
routers as soon as possible with no packet drops, the QoS
in the testbed is verified. The bottleneck’s link was always
congestioned, but only unclassified traffic was dropped.
On the other hand, the inter-arrival time of both flows

with QoS is constant. This proves that, for both flows, no
packets are dropped or lost. The same does not happen
with unclassified traffic, as its inter-arrival time rises with
the fall of available bandwidth.
A major problem of this implementation is the fact that

only one QSPEC model is supported. Therefore, all tested
scenarios are not as realistic as they could be.
Additionally, one future step in this work could be the
inclusion of a new Ethernet interface on router Towelie,
allowing both Notebook and IT-757 to be directly
connected to it, permitting experiments using much higher
transmission rates (more realistic scenario). NTP
(Network Time Protocol) could be used to synchronize all
the machines and determine packet delays for all traffic
classes. However, QoS packets are forwarded as they
arrive in the routers and therefore, their delay is practically
the sum of its processing time in each router.
The major step for future work would be the inclusion of

NSIS mechanisms in the existing Advanced Router
Mechanisms (ARM) module, used in Daidalos I and
Daidalos II architecture, currently using RSVP, unsuited
for today’s demanding requirements.

REFERENCES

[1] University of Goettingen, Next Steps in Signaling Implementation,
http://user.informatik.uni-goettingen.de/~nsis/home.html

[2] Network and Communication Systems Branch, Multi-Generator
(MGEN), http://cs.itd.nrl.navy.mil/work/mgen/

[3] Ethereal: A network protocol analyzer. http://www.ethereal.com.
[4] NSIS Ethereal dissector: NSIS protocol analyzer for Ethereal.
[5] http://user.informatik.uni-goettingen.de /~nsis/
[6] FU, X., Juchem, I., Dickmann, C., Design Options of NSIS

Diagnostics NSLP , Univ. Goettingen, 2006
[7] DICKMANN, C.; An Implementation and Evaluation of the

General Internet Signaling Transport (GIST) Protocol, September,
2005

[8] SCHULZRINNE, H., Hancock, R., GIST: General Internet
Signaling Transport, 2007

[9] FU, X., Bader, A., et alli, NSIS: A New Extensible IP Signaling
Protocol Suite , 2005

[10] FU, X., Manner, J., RFC:4094 - Analysis of Existing Quality-of-
Service Signaling Protocols, 2005

[11]

