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Abstract - This paper presents quality of service 
mechanisms, based on the NSIS (Next Steps In Signaling) 
protocol. For that, it was implemented a testbed with NSIS 
running through IPv6. The network’s QoS was measured by 
the number of drops, for each flow (either QoS or Best Effort 
traffic), occurred in routers. The first experiment shows the 
captured packets during a node association and request for 
QoS, namely a GIST session and a QoS NSLP session. The 
second experiment illustrates a more realistic scenario, where 
different flows with different QoS parameters and Best 
Effort traffic, were simultaneously sent through a path across 
different networks. The experimental study addressed in this 
work helped on the enhancement of NSIS developments for 
IPv6 environments. 
. 

I. INTRODUCTION  

One of the Internet main features, on its creation, was 
that all packets have the same treatment. This is also 
known as the Best Effort paradigm, where packets are 
forwarded in the routers based on a First Come First 
Served politic. Therefore, no arrangements were made to 
guarantee bandwidth, delays or any other services 
summarized under the term Quality of Service (QoS). 
However, due to the explosive growth of the Internet, and 
to the exponential use of multimedia services, like VoIP, 
QoS mechanisms are being proposed and developed. One 
of these brought the ability of creating reservations 
between nodes for carrying the QoS information along the 
data path, providing routers with the particular QoS needs 
of each flow. Particularly, the design of the Resource 
reSerVation Protocol (RSVP) by Internet Engineering 
Task Force (IETF) fit these needs for a while. However, 
RSVP turned out to suffer from flexibility to meet today’s 
requirements [6].  
Meanwhile, new signaling mechanisms started rising up, 

and in 2001 the Next Steps In Signaling (NSIS) [9] was 
formed to create a new signaling framework, capable of 
supporting future needs. This working group focused 
primarily on the architecture and design of a new signaling 
protocol for the Internet. From the beginning of these 
discussions, new implementations were created and used 
to test and validate the feasibility of the designs proposed. 
As a matter of fact, students at the University of Kentucky 
and University of Göettingen completed their 
implementations based on the early drafts, with modular 
interfaces of generic signaling services NSIS Signaling 
Layer Protocols (NSLP). There are known implementation 

activities at Siemens Roke Manner Research, NEC, Nokia, 
Alcatel and University of Coimbra; Ericsson, the 
University of Karlsruhe, the University of Twente, and 
Samsung are working towards independent 
implementations of QoS NSLP. In this paper we used the 
University of Goettingen implementation, since it seamed 
to be the most functional and robust. We implemented a 
testbed with NSIS running through IPv6. The tests 
performed had the purpose of seeing in action not only the 
NSIS signaling mechanisms, but also the captured packets, 
nodes associations, as well as the QoS mechanisms 
implemented in the network, in order to provide a solid 
NSIS background in future work. 

II.  BACKGROUND 

A. NSIS basics 

As a signaling protocol, NSIS focus on the manipulation 
of state in nodes along the data path, taken by a data flow. 
Here, data flow means a number of packets with the same 
source and destination address, marked with the same flow 
identifier. It is assumed that the data path between nodes is 
defined by routing protocols and so, NSIS works in a 
seamless way, interacting with all nodes along the data 
path.  
To get the flexibility needed to meet today’s 

requirements, NSIS splits itself in two layers: the first one 
is a lower level layer, responsible for the transport of 
signaling packets; the second is an upper level layer, 
responsible for the signaling between the intervenient 
nodes. 
NSIS was designed to support many signaling 

applications that manipulate states in the NSIS nodes 
along the data path. Note that some nodes may not support 
NSIS and, as a consequence of that, two NSIS neighbours 
can have one or more nodes between them. Therefore, the 
NSIS Initiator (NI) starts the signaling process, while the 
others NSIS Entities (NE) along the data path intercept 
and forward the messages until they reach the NSIS 
Receiver (NR). 

B. NSIS main principles 

NSIS, as said before, splits itself in two protocol layers. 
The first of them is called NSIS Transport Layer Protocol 
(NTLP) and insures the transport of all signaling messages 
between all nodes. That is possible because NTLP is 
primarily composed of a specialized messaging layer, 
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denoted as General Internet Signaling Transport (GIST). 
GIST is responsible for the discovery of signaling aware 
nodes along a flow path, as well as for the maintenance of 
transport layer connection along the discovered paths, and 
operates on top of existing transport protocols (TCP, 
UDP, SCTP, DCCP or any other one). 
The second is denoted as NSIS Signaling Layer Protocol 

(NSLP) and deals with signalling application-specific 
functionality. NSLP refers to actual signaling operation or 
signaling applications like QoS NSLP (used for QoS 
reservation) and NAT/FW-NSLP. 
The concept of splitting NSIS in two layers makes itself 

more generic, extensible and flexible, since each layer has 
its responsibility, and together they provide its 
functionality. 
Unlike RSVP, the NSIS decoupling of peer discovery 

from the signaling message transport mechanism makes 
possible the use of standard security protocols or transport 
layer protocols. That is done by introducing a discovery 
component in NTLP, which can rely on IP router alert 
option or other approaches, such as routing tables. 
In the other hand, with the creation of a session identifier 

is possible to identify a signaling session and signaling 
state, independent of a flow identifier. 
Furthermore, NSIS signaling is applicable in different 

parts of the Internet, as well as may be triggered in 
different ways, facts that allow the signaling to be initiated 
and terminated in different parts of the network, such as 
end hosts, domain boundaries or interior routers. Thus, 
NSIS protocol offers support for many signaling 
exchanges: end-to-end (performed between end hosts), 
edge-to-edge (performed between boundary nodes of the 
same domain) and end-to-edge (host-to-network 
scenarios). 

III.  NSIS TRANSPORT LAYER PROTOCOLS (NTLP) 

The functionality of NTLP is based on the following 
principle: its mechanisms will only operate on its 
neighbour NSIS Entities (NE). Thus, NTLP consists on a 
set of hop-by-hop protocols. 
Taking this in consideration, its functional mechanism 

can be described in the following: when a certain NE is 
ready to send a signaling message, delivers it to NTLP 
with its data flow information. Therefore, it is the NTLP 
responsibility to deliver it to the next NE in the data path. 
From the perspective of a NE that receives a signaling 
message, one of two things can happen: 1) NTLP forwards 
it to the next NE in the data path (case it exists); 2) If an 
appropriate local signaling application exists in the NE, it 
will receive the message from NTLP. In this last case, the 
signaling application will not only process the received 
signaling message, but also creates another message to be 
sent by NTLP to the next NE.  
So, NTLP offers transport-layer services to higher-layer 

signaling applications for two purposes: sending/receiving 
signaling messages, and exchanging control and feedback 
information. Since all messages are treated locally, NTLP 

functional mechanism is quite simple, taking in 
consideration that operations such as endpoints discovery, 
security and NAT translations are no longer required. 

A. GIST (General Internet Signaling Transport) 

GIST has two goals: NE’s discovery along the data path 
and establishing a Message Routing State (MRS) in each 
session. Instead of creating a new transport protocol, GIST 
reuses existing transport and security protocols, in order to 
provide a universal message transport service. As a soft-
state protocol, GIST is responsible for the creation and 
maintenance of two different states, both related to 
signaling transport: a per-flow message routing state for 
managing the processing of outgoing messages, and a 
message association state for managing per-peer state 
associated with connection mode messaging to a particular 
peer. This consists of signaling destination address, 
protocol and port numbers, internal protocol configuration 
and state information. Besides information about its 
neighbour NE, GIST also maintains certain message 
routing information such as the flow identifier, the NSLP 
type and session identifier, to uniquely identify the 
signaling application layer session for a flow. 
GIST can operate in two modes: datagram or 

connection. While the first one uses an unreliable 
unsecured datagram transport mechanism (taking UDP as 
a first choice), the second uses any stream or message-
oriented transport protocol (being TCP the first choice). 
Both modes can be used in the different nodes that 
compose the data path, without coordination or manual 
configuration, allowing the use of datagram mode at the 
edges of the network and connection mode in its core. 

B. GIST Messages: 

GIST defines 6 different messages. 
The GIST-QUERY is always sent before any association 

between nodes, to test if the destiny node can or cannot 
proceed to the message association. This message is only 
sent in datagram mode and must include a Stack Proposal. 
Since it always elicits for a response, the FLAG R must be 
set (R=1). 
The GIST-RESPONSE is present on datagram or 

connection mode. However, in the first case it is necessary 
to include a Responder Cookie, as well as its own Stack 
Proposal and Configuration Data. It must echo the 
Message Routing Information (MRI) (with inverted 
direction) Session ID (SID) and Query-Cookie of the 
Query. 
The GIST-CONFIRM may be sent in datagram or 

connection mode (if a messaging association has been 
reused). It must echo the MRI (with inverted direction) 
SID and Responder-Cookie if the Response carried one. 
A plain GIST-DATA message, in the other hand, 

contains no control objects, but only the MRI and SID 
associated with the NSLP data being transferred. 
The GIST-ERROR message goal is to report a problem 

occurred at the GIST level. In datagram mode, this 
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message includes a Network Layer Information object for 
the originator of the error message. 
 Finally, the GIST-HA-HELLO message is sent 

only in Connection Mode, in order to indicate that a node 
wishes to keep a messaging association open [5]. 

C. Security in the 3-Handshake 

In order to prevent from several possible attacks, GIST 
uses a cookie mechanism. It starts with the Querying node 
inserting a cookie into the Query message. This cookie 
will be echoed by the Responder Node, which will also 
add its own cookie. This last cookie will be included in the 
confirm message, as shown below: 

 

 
Figure 1 – GIST: MRS setup 

This mechanism is not only a way of transferring 
information between nodes with authentication, but also 
prevents against spoofing of the Query, Response and 
Confirm messages, since the hacker would face the need to 
guess the cookie. 

IV.  QOS SIGNALING APPLICATION PROTOCOL  

One of the elementary NSIS principles is that all 
signaling applications use the generic functionality 
provided earlier by the NTLP. In a NSIS node, the request 
for QoS may be initiated either by network management or 
by a local application request, initiated by a user 
application. Only messages related to QoS are passed up 
to the QoS NSLP processing module. This signaling 
application can signal for any QoS model, namely Intserv 
or Diffserv. Reservation-specific parameters, such as 
available bandwidth and token bucket sizes, are 
encapsulated in a QSPEC object, and then carried from 
one QoS NSLP node to another. These parameters ensure 
some degree of interoperability in several QoS Models, 
providing a common language to be re-used. 
In each QoS NSLP node, it is present a RMF (Resource 

Management Function) responsible for handling the QoS 
requests, specifically the QSPEC. There is also a local 
QoS Model that describes how the RMF should interpret 
the QSPEC as well as how to grant and configure the 
resource. In the other hand, the grant processing involves 
two additional local decision modules, namely policy 
control and admission control. In the end, the QoS NSLP 
node may resort to acknowledge messages to indicate that 

the required resources have been correctly configured. 
These messages are unidirectional and the QoS NSLP 
node may propagate the resource request further along the 
path towards the data receiver. 

A. QoS NSLP messages: 

The QoS NSLP is a soft state protocol and defines four 
different types of messages. These are: 
The RESERVE message, unlike all the other QoS NSLP 

messages, manipulates QoS NSLP reservation state, by 
creating, modifying, refreshing or removing it. 
The QUERY message, without making a reservation, 

requests information about the data path. This can be used 
to “probe” the network for path characteristics, either for 
support of certain QoS models or for receiver-initiated 
reservations. 
The RESPONSE message provides information about the 

result of the QUERY message. 
Finally, the NOTIFY message provides information to a 

QoS NSLP node, differing from a RESPONSE message in 
the particular fact that it is sent asynchronously and need 
not refer to any peculiar state or previously received 
message. Therefore, the information conveyed by a 
NOTIFY message is typically related to error conditions. 
Note that, unlike RSVP, QoS NSLP messages are sent 

NSIS peer-to-NSIS peer, and support both sender initiated 
and receiver initiated reservations.  

V. TESTBED IMPLEMENTATION 

In order to observe NSIS functionality, it was built a 
testbed using University of Goettingen NSIS 
implementation [1]. The used testbed is presented in figure 
2. 
In order to differentiate traffic, this implementation uses 

IPtables or IP6tables marking, corresponding to IPv4 or 
IPv6 addressing, respectively. However, this strategy has 
never turned out to be functional when using IPv6 
addressing, since all incoming traffic in routers was 
recognized as unclassified traffic. In this sense, the source 
code was changed (namely the nsis-0.5.1-
dev/nslp/qos/rmf/IpTablesWrapper.cpp file) to use U32 
filters, based on source and destiny IPv6 address, instead 
of IP6tables marking. After this modification, as different 
flows were classified as Best Effort and QoS traffic, we 
could assume that the problem was in the IP6tables 
marking. This modified version can be downloaded in 
http://hng.av.it.pt/~fferreira/downloads/nsis-0.5.1-
dev_u32.rar.  
 

 
Figure 2 – Schmatic of the used testbed 
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Note that, in both experiments, ‘notebook’ was used as 
the QoS NSIS Initiator (QNI) while ‘Acer’ was used as the 
QoS NSIS Responder (QNR). IT-757 was responsible for 
background traffic generation (also having ‘Acer’ as its 
destiny). The ‘Compac’ terminal, used in the last 
experiment, was a QNI in a second QoS request to ‘Acer’. 
Meanwhile, ‘Towelie’ was elected the network’s 

bottleneck, as the maximum overall bandwidth of both the 
interfaces was specified to 500kbps. Also, the default 
bandwidth requested on a QoS NSLP Reserve is 80 kbps, 
so traffic generated in ‘Notebook’ having ‘Acer’ as destiny 
(Flow 1) will have the same rate. Finally, the background 
traffic rate is 6 Mbps (much greater than the bottleneck 
capacity), generated with a Poisson distribution. These 
parameters were unchangeable for the following 2 
experiments: 

• TEST 1 – Simple QoS Request: 
After IT-757 starts generating the background traffic 

having ‘Acer’ as destiny, ‘Notebook’ makes a QoS request 
and starts generating its traffic (Flow 1). 

• TEST 2 – Double QoS Request with different 
parameters: 

Similar to TEST 1, but ‘Compac’ terminal also does a 
QoS request and its traffic generation (Flow 2 has a rate of 
160 kbps and the QoS request is for a bandwidth of the 
same rate). 
Note that all traffic (Flow 1, Flow 2 and background) was 

generated with Mgen [2]. Also, using bash scripting, 
different scripts were created in order to make a QoS 
request before generating traffic for the correspondent 
flow. Additionally, a clear.sh script was done with the 
purpose of clearing qdiscs and classes created on both 
routers. The Tcpdump tool was used in ‘Acer’ in order to 
capture and control incoming traffic. 

In TEST 2, the source code (particularly the file /nsis-
0.5.1-dev/nslp/qos/qos_client.cpp) was changed in 
‘Compac’ terminal, so that a reservation with different 
parameters could be done. 

VI.  RESULTS 

This section presents the results of each experiment, as 
well as their respective details. 

A. TEST 1 

Using Ethereal – Network Protocol Analyser [3], as well 
as the adequate dissectors [4], all packets related to node 
association (either transport or signaling layer) were 
captured, visualized and presented in the figure below. 

 
Figure 3 – Captured packets in a NSIS Session 

While the first 3 captured packets are related to the 
transport layer, and therefore use GIST protocol, the last 3 
packets are related to signaling for the QoS requested. As 
explained before, the node association (transport layer) is 
done with the 3-handshake performed with GIST Query-
Response-Confirm messages. In the other hand, the 
intervenient nodes negotiate the request for QoS (signaling 
layer) with the QoS NSLP Reserve-Notify-Response 
messages. 
Additionally, in this test it was possible to see in real-

time the different classes created on routers (Figure 4). 
Particularly, the existence of class 1:1 root, as well as two 
subclasses: Class 1:2 and Class 1:6. While the former 
handles with unclassified traffic, the latter handles with 
QoS traffic (Flow 1). This explains why there are so many 
drops of packets in the first case (Best Effort treatment), 
while all packets in the latter subclass are forwarded (QoS 
service treatment). 

 

 
Figure 4 – Different traffic classes on router Towelie (Test 1) 

Furthermore, it was possible to see the ‘Acer’ incoming 
traffic, as well as the rate of each traffic flow (Figure 5). 
At the beginning, background traffic, represented in red, 
arrives at a 500kbps rate (maximum overall bandwidth of 
the network’s bottleneck: Towelie). However, 
approximately 10 seconds later, Flow 1 (with 80 kbps 
rate) is started, making background traffic’s rate drop 
approximately to 420 kbps. 
Two conclusions can be drawn: 1) the QoS treatment 

applied to Flow 1 assures that all its packets will arrive to 
its destiny as soon as possible; and 2) even more drops of 
background traffic will occur in the network’s bottleneck, 
router Towelie, as less bandwidth for unclassified traffic is 
available in router Towelie, due to the start of Flow 1. 
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Figure 5 – Incoming traffic in ‘Acer’ terminal (Test 1) 

B. TEST 2 

As a new QoS request was made from ‘Compac’ to 
‘Acer’, it was possible to see a new traffic subclass created 
on both routers, particularly Class 1:7 (Figure 6). Again, 
no packets of these classes with QoS treatment were 
dropped. However, and as expected, the same did not 
happen with Class 1:2 (Best Effort treatment), where a 
significant number of drops occurred. 
 

 
Figure 6 - Different traffic classes on router Towelie (Test 2) 

With TCPdump tool it was possible to analyse the per-
flow bandwidth rate for each traffic flow on routers 
(Figure 7). In red, Best Effort traffic is send to ‘Acer’ with 
a rate of 500kbps (maximum overall bandwidth of router 
Towelie). This rate dropped approximately to 420 kbps 
with the appearance of Flow 1 (80 kbps), represented in 
green. However, about 40 seconds later, Flow 2 (160kbps) 
is stated, also with QoS treatment, and due to that, 
background traffic’s rate drops again, this time to 
approximately 260 kbps. 
Twenty seconds later, the green line drops (Flow 1 is 

stopped) and due to that, 80kbps more of bandwidth are 
now available to unclassified traffic in router Towelie: the 
red line will arise that rate. As expected, the same 
behaviour will happen with the end of Flow 2: this time 

160kbps of bandwidth will become available to 
unclassified traffic. 
 

 
Figure 7 - Incoming traffic in ‘Acer’ terminal (Test 2) 

Background traffic’s available bandwidth depends on the 
number of QoS flows and its reserved bandwidth. 
Therefore, when both QoS flows are active 
simultaneously, less bandwidth is available to unclassified 
traffic, and more drops will occur. For each instant, the 
sum of the rates of the active flows, in that instant, is 
always equal to the maximum overall bandwidth of the 
network’s bottleneck, router Towelie (500kbps). 
TCPdump tool also permitted a different analysis: packet 

Inter-arrival time, as shown below on Figure 8. Taking in 
consideration that both Flow 1 and Flow 2 (again, 
represented in green and blue respectively) have reserved 
bandwidth for each, it is expected their inter-arrival time 
to be constant. Since Flow 2 has twice the rate of Flow 1, 
its inter-arrival time is half the value of the Flow 1. 
  

 
Figure 8 – Inter-arrival time of each flow 

However, the analysis of the background traffic inter-
arrival time may be more complex. Represented in red, 
this value is approximately constant until the start of Flow 
1. As less bandwidth is available in router Towelie for 
unclassified traffic, its inter-arrival time will rise. After the 
start of Flow 2, the red line rises even more and becomes 



REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008 

 

also uncertain, instead of being approximately straight as 
before. Finally, as both Flow 1 and Flow 2 were stopped, 
the background traffic’s inter-arrival time successively 
decreases. 

VII.  CONCLUSION AND FUTURE WORK 

One of the main goals of these experiments was to 
provide QoS mechanisms to a testbed using NSIS protocol 
and observe it functionality. As QoS traffic is forwarded in 
routers as soon as possible with no packet drops, the QoS 
in the testbed is verified. The bottleneck’s link was always 
congestioned, but only unclassified traffic was dropped. 
On the other hand, the inter-arrival time of both flows 

with QoS is constant. This proves that, for both flows, no 
packets are dropped or lost. The same does not happen 
with unclassified traffic, as its inter-arrival time rises with 
the fall of available bandwidth. 
A major problem of this implementation is the fact that 

only one QSPEC model is supported. Therefore, all tested 
scenarios are not as realistic as they could be. 
Additionally, one future step in this work could be the 
inclusion of a new Ethernet interface on router Towelie, 
allowing both Notebook and IT-757 to be directly 
connected to it, permitting experiments using much higher 
transmission rates (more realistic scenario). NTP 
(Network Time Protocol) could be used to synchronize all 
the machines and determine packet delays for all traffic 
classes. However, QoS packets are forwarded as they 
arrive in the routers and therefore, their delay is practically 
the sum of its processing time in each router. 
The major step for future work would be the inclusion of 

NSIS mechanisms in the existing Advanced Router 
Mechanisms (ARM) module, used in Daidalos I and 
Daidalos II architecture, currently using RSVP, unsuited 
for today’s demanding requirements. 
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