
REVISTA DO DETUA, VOL. 4, Nº 9, JUNHO 2008 

 

                                                           
P. Georgieva is with the Department of Electronics Telecommunications and Informatics, University of Aveiro, 3810-193 Aveiro, Portugal 

(corresponding author, phone: +351-234-370531; fax: +351-234-370-545; e-mail: petia@det.ua.pt). 

L. Sánchez Dediós and S. Feyo de Azevedo are with the Department of Chemical Engineering, Faculty of Engineering, University Porto, Rua Dr. 

Roberto Frias s/n, 4200-465 Porto, Portugal (e-mail: sfeyo@fe.up.pt). 

 

Resumo – Este artigo é focado em estudo comparativo de 
quatro estruturas de controlo preditivo baseado em modelos 
lineares, desenhado para o processo de cristalização por lotes.  
Dois esquemas de controlo do tipo uma entrada - uma saída e 
dois esquemas do tipo varias entradas - varias saídas são 
analisados em relação a qualidade do produto final. Os 
modelos lineares são determinados através de duas técnicas 
alternativas de identificação baseadas em um teste ou dois 
testes de recolha de dados. Os resultados do estudo mostram 
que as estruturas uma entrada - uma saída levam  a melhor 
qualidade do produto final. No entanto unicamente o controlo 
da sobresaturação (a saída) através de taxa de vapor (a 
entrada) consegue satisfazer todos os objectivos do processo.  
 
Abstract – This work is focused on a comparative study of 

four structures of linear model predictive control (LMPC) 
for a fed batch crystallization process.  Two single input 
single output (SISO) and two multiple input multiple output 
(MIMO) control schemes are analysed with respect to the 
final process quality achieved. The linear models required in 
the controller structures are extracted applying two 
identification alternatives termed as classical (one test) and 
double test identification. The SISO cases seem to guarantee 
more satisfactory end point quality of the process. However, 
only the LMPC of the supersaturation manipulating the 
steam flowrate makes feasible all conflicting control 
objectives.  
 

I. INTRODUCTION 

During the last decade the model based predictive control 
(MPC) became an attractive control strategy implemented 
in a variety of process industries. However, it can be 
considered as industrial alternative only for continuous 
and predominantly linear processes (Qin and Badgewell, 
2003). The application of MPC for batch nonlinear cases 
is still far from being an industrial reality and represents 
an interesting theoretical and practical control challenge 
(Balasubramhanya and Doyle, 2000).  The batch or fed-
batch mode is a typical production scheme for a large 
group of pharmaceutical, biotechnological, food and 
chemical processes. It is related with the formulation of a 

control problem in terms of economic or performance 
objective at the end of the process (Nagy and Braatz, 
2003). For example, the crystallisation quality is evaluated 
by the particle size distribution (PSD) at the end of the 
process which is quantified by two parameters - the final 
average (in mass) particle size (MA) and the final 
coefficient of particle variation (CV). The main challenge 
of the batch production is the large batch to batch 
variation of the final PSD. This lack of process 
repeatability is caused mainly by improper control policy 
and results in product recycling and loss increase. MPC, 
being one of the approaches that inherently can cope with 
process constraints, nonlinearities, and different objectives 
derived from economical or environmental considerations 
(Morari and Lee, 1997), has the potential to overcome the 
problem of the lack of repeatability and drive the process 
to its optimal state of profit maximization and cost 
minimization. 
The present work is focused on a comparative analysis 

between various scenarios of linear MPC implemented to 
a batch white sugar crystallizer. Two Single Input Single 
Output (SISO) and two Multiple Input Multiple Output 
(MIMO) MPC schemes were compared with respect to the 
final process quality achieved. The linear models required 
in the controller structures were extracted applying two 
identification approahces – classical (one test) and double 
test identification. The SISO scheme with a double test 
identified model seem to guarantee more satisfactory end 
point quality of the process. However, only one of the 
tested linear MPC scenarios (controlled output – 
supersaturation, manipulated input - steam flowrate) 
makes feasible all conflicting control objectives.  

II.   PROCESS OPERATION 

Sugar production is characterized by strongly non-linear 
and non-stationary dynamics and goes naturally through a 
sequence of relatively independent stages: charging, 
concentration, seeding, setting the grain, crystallization 
(the main phase), tightening and discharge ((Georgieva et 
al., 2003).  
The feedback control policy is based on measurements of 

the flowrate, the temperature, the pressure, the stirrer 
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power and the supersaturation (by a refractometer).  
Measurements of these variables are usually available for 
a conventional crystallizer.  
 
Charging: During the first stage the crystallizer is fed 

with liquor until it covers approximately 40 % of the 
vessel height. The process starts with vacuum pressure of 
around 1 bar (equal to the atmospheric pressure) and 
reduces it up to 0.23 bar. When the vacuum pressure 
reaches 0.5 bar, the feed valve is completely open such 
that the feed flowrate is kept at its maximum value. When 
the liquor covers 40 % of the vessel height, the feed valve 
is closed and the vacuum pressure needs some time to 
stabilize around the value of 0.23 bar before the 
concentration stage starts.  
 
Concentration. The next phase is the concentration. The 

liquor is concentrated by evaporation, under vacuum, until 
supersaturation reaches a predefined value (typically 
1.11). At this stage seed crystals are introduced into the 
pan to induce the production of crystals. This is the 
beginning of the third (crystallisation) phase.  
 
Crystallisation (main phase). In this phase as evaporation 

takes place further liquor or water is added to the pan in 
order to guarantee crystal growth at a controlled 
supersaturation level and to increase total contents of 
sugar in the pan. Near to the end of this phase and for 
economical reasons, the liquor is replaced by other juice 
of lower purity (termed syrup). 
 
Tightening: Once the pan is full the feeding is closed. 

The tightening stage consists principally in waiting until 
the suspension reaches the reference consistency, which 
corresponds to a volume fraction of crystals equal to 0.5. 
The supersaturation is not a controlled variable at this 
stage because due to the current conditions in the 
crystallizer, the crystallization rate is high and it prevents 
the supersaturation of going out of the metastable zone.  
The stage is over when the stirrer power reaches the 
maximum value of 50 A. The steam valve is closed, the 
water pump of the barometric condenser and the stirrer are 
turned off. Now the suspension is ready to be unloaded 
and centrifuged. 
The different phases are comparatively independent 

process states and since the crystallisation is the main 
stage responsible for the final product quality in terms of 
PSD, this study is focused on analysing several LMPC 
strategies specifically for the crystallization phase.  
Based on a set of industrial data collected over normal 

white sugar production cycles, average values for the main 
process variables were determined and summarised in 
Table 1. Table 2 consists of the reference values and 
restrictions of the process quality variables evaluated at 
the batch end (tf ).  
 
The supersaturation is the main driving force of the 

crystallization but the actual measured variable is the brix 

of the solution. However, due to a straightforward relation 
between supersaturation and brix, the supersaturation is 
considered as the controlled process output. For more 
details with respect to the process see Georgieva, et al., 
2003.  

 
Table 1.Process variables 

Name Notatio
n 

Average 
values 

Liquor/Syrup feed 
flowrate 

fF  0.0057 sm /3  

Steam flowrate sF  1.6 sm /3  
Water feed 

flowrate 
wF  0 sm /3  

Feed temperature fT  65 ºC 

Steam temperature sT  140 ºC 

Brix of feed fBx  0.7 [ ] 

Steam pressure sP  2 bar 

Temperature of 
massecuite 

mT  72.4944 ºC 
(average) 

Vaccum pressure vacP  0.25 bar 

Brix of the 
solution 

solBx  2 bar 
(average) 

Stirring power W  15000 W 
 
 

Table 2. Reference values and restrictions of process quality variables 

Name Notation 
tf - final time 

Value 

Average (in 
mass) crystal size 

AM (tf) 0.5-0.6 mm 
(ref.) 

Coeff. of 
variation 

CV (tf) below 25% 

Volume V (tf) 35 m3 
(max) 

Supersaturation 
S 1.3 (max) 

Mass fraction 
of crystals 

cw  (tf) 40 % (min) 

 
 

III.  IDENTIFICATION ALTERNATIVES 

Attempts to extract a representative linear model 
describing all phases of the process, from charging to 
centrifugation, are most likely to fail. However, looking 
for a reliable linear approximation only for the 
crystallization phase is worth to study. The general 
structure of the input-output linear model assumed for 
identification has the following mathematical 
representation (Rossiter, 2003):  
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where 
un  is the number of model inputs. The orders of 

the numerator )( 1−qBi  and the denominator )( 1−qAi  are 

nb and na respectively, which means (nb+na) parameters 
are to be adjusted.  
 
The first identification step is to specify the model inputs 

and outputs.  The main candidates are those process 
variables that mainly influence the final product quality. 
The feed flowrate, steam flowrate and vacuum pressure 
are usually the manipulated physical inputs in the 
crystallization industry and therefore they are considered 
as possible model inputs. As for the outputs, the 
supersaturation, being the driving force for the 
crystallization phenomenon, the temperature of the 
massecuite and the average in mass crystal size (AM) are 
the most important control variables and are assumed as 
possible model outputs.  
 
The choice of nb and na is crucial in terms of model 

reliability, complexity and sensitivity. Their final values 
were chosen after a number of tests minimizing the 
Relative Mean Square (RMS) error defined as follows: 
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Where r
iy  are the data related to a process variable 

considered as the output i, m
iy is the respective model 

output i, k is the sampling instant and N is total number of 
samples. 
 
In the identification tests, the inputs are generated as 

random variations limited by maximum of 10% around the 
average values collected in Table 1. The inputs were 
simulated, in Matlab, as pseudo-random binary signals 
(PRBS) invoking the Simulink signal builder. The 
sampling period was fixed as 30 sec.  
Remark: For the second half of the crystallization the 

random generation policy applied to the feed flow rate of 
syrup led to a very small quantity of massecuite at the 
phase end. Therefore the identification proceeded with 
empirically determined feed flow rate such that the final 
volume approaches the respective reference value given  
in Table 2.  
Two identification strategies were investigated.  
 

A. Classical (one test) identification  

The randomly generated inputs (iu ) are introduced either 

to the process (if experiments with the process are 
allowed), or to a very detailed process model that simulate 
the process (the case in this work). The process responses 
are recorded (iy ) and the respective mean values are 

computed ( meani,u , meani,y ). Then the coefficients of the 

linear model (1) are extracted supplying as inputs 

meani,i uu −  and as outputs meani,i yy − . This classical 

identification requires only one test for identification as it 
is illustrated in Fig. 1 for the case of two inputs and two 
outputs ( 2,1=i ). 
 

 
Fig. 1 Classical (one test) identification 

B. Double test identification 

An alternative of the so-called classical identification is 
proposed here where prior to the test with randomly 
generated inputs (iu ), a test with constant inputs 

( meani,
'
i uu = ) is performed and the process reactions 

( iy , '
iy ) are recorded, see Fig. 2. Next, the coefficients of 

the linear model (1) were extracted supplying as inputs 
'
ii uu −  and as outputs '

ii yy − . 

   
Fig. 2 Double-test identification 

This double test identification requires more 
computational efforts than the classical approach, but has 
the potential to provide a better approximation.  
Remark: In case base input trajectories can be 

determined, the first test may be performed with these base 
trajectories and not necessarily with the constant inputs.  
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IV.  MODEL PREDICTIVE CONTROL  

Linear MPC is an optimisation-based multivariable 
constrained control technique that uses a linear dynamic 
model for the prediction of the process outputs. At each 
sampling time the linear model predicts future process 
responses to potential control signals over the prediction 
horizon (Hp). The predictions are supplied to an 
optimization procedure to determine the values of the 
control action over a specified control horizon (Hc) that 
minimize the following performance index  
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The prediction horizon Hp is the number of time steps 

over which the prediction errors are minimized and the 
control horizon Hc is the number of time steps over which 
the control increments are minimized, r is the desired 
response (the reference) and ym is the model response. 

cHkk uuu ,, 1+ are tentative future values of the control 

input, which are limited by minu and maxu and 

parameterized as peace wise constant. 1λ and 2λ are the 

output and the input  weights respectively, which 
determine the contribution of each of the components (the 
output error and the control increments) of the 
performance index (3). The length of the prediction 
horizon is crucial for achieving tracking and stability. For 
small values of Hp the tracking deteriorates but for high Hp 
values the bang-bang behaviour of the process input might 
be a real problem. The MPC controller requires a 
significant amount of on-line computation, since the 
optimization (3) is performed at each sample time to 
compute the optimal control input. At each step only the 
first control action is implemented to the process. 

V. SISO LINEAR MPC  

Single Input Single Output (SISO) MPC based on a 
linear process model is the first control strategy to 
consider. The control objective is to get a high quality 
final product which is quantified by a desired final average 
crystal size, AM (tf), by minimisation of the final 
coefficient of variation, CV(tf) and by maximisation of the 
final crystal content wc(tf) . This end point quality is going 
to be achieved by two different structures depending on 
the selected control input, manipulating the feed flowrate 
(Structure 1) or the steam flowrate (Structure 2), such that 
the supersaturation follows a previously determined (by an 
optimization scheme) reference trajectory (see Georgieva 
and Feyo de Azevedo, 2006.  

 
The aim of this study is also to analyse the influence of 

the two identification approaches discussed in section 3.  
Therefore, for each of the two SISO control structures, the 
model obtained by classical identification and the model 
obtained by double test identification were implemented.  
 

A. MPC of  supersaturation manipulatingfeed 
flowrate.(Structure 1) 

The results of five tests for MPC of the supersaturation 
manipulating the feed flowrate (Structure 1) are 
summarized in Table 3 and Table 4. The model (1) is 
obtained either by classical identification (in Table 3) with 
nb =5 and na=7 or by doublet test identification (in Table 
4) with nb =4 and na=7. In both cases the selected 
polynomial degrees guaranteed an RMS error below 0.1.  
The identified parameters of the models are included in 
the Appendix. The control sampling time was chosen to be 
equal to the identification sampling time, Ts = 30s and 

11 =λ . The effect of varying the main controller 

parameters Hp, Hc and 2λ  is studied. The prediction 

horizon is either shifted by usually one sampling time into 
the future or shrunk (Nagy et al., 2005) in case it was 
initially equal to the batch duration. Hence, the shrunk Hp 
or Hc is calculated as follows: 
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Where tf  is the final time and tactual is the current time. In 
the first three columns of Table 3 and 4, the effect of 
increasing the prediction horizon (Hp) and keeping 
constant the control horizon (Hc) is studied. Note that it 
improves the end point objectives AM (tf) and wc(tf) but to 
the expense of  worse V(tf). Applying eq. (4) to determine 
the shrunk prediction horizon (column 4) and control 
horizon (column 5) has the effect of reducing the input 
weight 2λ  in (3) to get the desired final time values of the 

quality variables. 

B  MPC of  supersaturation manipulating steam 
flowrate (Structure 2) 

The same tests, as in the previous subsection, for MPC of 
supersaturation are summarised in Table 5 and Table 6 but 
now manipulating the steam flowrate (Structure 2). The 
linear models were obtained again by classical 
identification (in Table 5) with nb =5 and na=7 and by 
double test identification (in Table 6) with nb =4 and na=7. 
The identified parameters are listed in the Appendix 
(section A1). The general conclusion is that the MPC 
scheme with model based on the classical identification 
cannot guarantee sufficient quality with respect to AM (tf) 
and wc(tf). Note that for no one of the five cases 
considered the conflicting end point objectives are 
simultaneously feasible.  
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In contrast to the above conclusions, the MPC scheme 
with model based on the double-test identification, gives 
quite stable and not sensible, to small control parameter 
changes, results.  In fact, this is the only scheme where all 
conflicting end point objectives are simultaneously 
feasible for all cases (see Table 6).  
 

Table 3. MPC (Structure 1) with model obtained by classical 

identification  

Case 1 2 3 4 5 

Hc 5 5 5 5 Shrunk. 

Hp 5 6 10 Shrunk Shrunk 

2λ  10 10 10 1 1 

Smax 1.21 1.21 1.21 1.19 1.21 

AM ( tf) 0.47 0.50 0.59 0.44 0.59 

CV(tf) 23.29 23.34 23.40 23.29 23.39 

V(tf) 30.58 28.62 24.33 32.18 24.27 

wc(tf) 0.43 0.46 0.55 0.40 0.55 

 
 

Table 4. MPC (Structure 1) with model obtained by double-test 

identification 

Case 1 2 3 4 5 

Hc 5 5 5 5 Shrunk 

Hp 5 6 10 Shrunk Shrunk 

2λ  10 10 10 1 1 

Smax 1.21 1.21 1.20 1.31 1.31 

AM ( tf) 0.49 0.50 0.62 0.47 0.48 

CV(tf) 23.34 23.37 23.42 21.42 21.40 

V(tf) 28.94 28.29 23.47 35.28 34.89 

wc(tf) 0.46 0.47 0.57 0.35 0.36 

VI.  MIMO  LINEAR MPC  

Multiple Input Multiple Output (MIMO) MPC based on 
a linear process model is the second control strategy 
considered. Our study is limited for the structure of two 
inputs - two outputs (TITO).  
Among the various TITO structures tested, in this paper 

are considered the following ones: i) MPC of the 
supersaturation and the temperature of massecuite 
manipulating the feed flow rate and the vacuum pressure 
(Structure 3) and ii) MPC of the supersaturation and the 
final value of AM manipulating the same inputs (Structure 
4). Based on the encouraging results with the double test 
identification of the SISO models, now TITO linear 
models obtained only by double test identification are 
considered. The generalized input-output model structure 
has the following mathematical representation 
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where the identified polynomials iA and ijB
for 

each of the two structures are summarised in the 
Appendix (section A2).  
 

Table 5. MPC (Structure 2) with model obtained by classical 

identification  

Case 1 2 3 4 5 

Hc 5 5 5 5 
Shrun

k 

Hp 5 5 15 
Shrun

k 
Shrun

k 

2λ  1 0.1 1 1 1 

Smax 1.20 1.20 1.13 1.19 1.19 
AM ( tf) 0.47 0.45 0.14 0.32 0.32 

CV(tf) 
22.7

8 22.80 5.01 22.78 22.89 

V(tf) 
35.3

3 34.82 
35.4

5 35.21 35.01 
wc(tf) 0.39 0.38 0.02 0.27 0.27 

 
 
 

Table 6. MPC (Structure 2) with model obtained by double-test 

identification 

Case 1 2 3 4 5 

Hc 5 5 5 5 Shrunk 
Hp 5 5 15 Shrunk Shrunk 

2λ  1 0.1 1 1 1 

Smax 1.2005 1.1881 1.1928 1.195 1.1833 
AM ( tf) 0.4811 0.5373 0.5252 0.5305 0.5292 
CV(tf) 22.7992 23.1684 22.9758 23.5287 23.1891 
V(tf) 35.1066 34.8621 35.174 34.7471 34.9551 
wc(tf) 0.402 0.4655 0.4442 0.4735 0.4582 

 

A  MPC of supersaturation and temperature 
manipulating feed flow rate and vacuum pressure 
(Structure 3) 

The final control objectives (the same as for the SISO 
cases), are to get a high quality final product quantified by 
the AM (tf), CV(tf) and wc(tf).  However, the operational 
control objectives are different for each of the structures. 
For Structure 3 the aim is by manipulating simultaneously 
the feed flowrate and the vacuum pressure, to force the 
supersaturation and the temperature of massecuite to 
follow reference trajectories. Results of the MPC applied 
to the two structures are summarised in Table 7 and 8. The 
input and output weights were chosen (by trial and errors) 
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to compensate the different ranges of the two inputs and 
the two outputs respectively and to determine their 
different contribution to the performance index.  Structure 
3 and Structure 4 seem to be equally not sensitive to 
variations in controller parameters. The values of the final 
quality variables in the two structures are quite similar. 
This can be explained only with the clear priority of the 
supersaturation as the main controlled variable for the two 
structures. The temperature of massecuite and the end 
value of AM have less influence on the optimal value of 
(3).  
 
 
 

Table 7. Results of MIMO MPC (Structure 3) 

Case 1 2 3 4 

Hc 5 5 5 5 

Hp 5 15 30 
Shrun

k 

Input Weights 
[104 

1] 
[104 

1] 
[104 

1] 
[104 

1] 
Output 

Weights 
[103 

1] 
[103 

1] 
[103 

1] 
[103 

1] 

Smax 1.23 1.225 1.221 1.221 

AM ( tf) 0.46 0.434 0.434 0.441 

CV(tf) 23.30 
23.11

2 23.03 
23.01

6 

V(tf) 33.58 
34.84

0 34.84 
34.94

7 

wc(tf) 0.40 0.374 0.372 0.376 

 

B MPC of supersaturation and AM (tf)  
manipulating  feed flow rate and vacuum 
pressure (Structure 4) 

The operational goals, for Structure 4, are obtained by 
manipulating simultaneously the feed flowrate and the 
vacuum pressure, to force the supersaturation to follow a 
reference trajectory and to get a referenced final AM 
value. Note that in both structures (Structure 3 and 
Structure 4) the final AM and the final crystal content are 
slightly below the desired values and in all cases the 
results are worse than in Structure 2 (SISO MPC of 
supersaturation manipulating the steam flowrate). This 
result goes beyond theoretical proofs and can be 
interpreted with a significant discrepancy between the 
linear model part of the MPC structure and the inevitably 
nonlinear nature of the process in hand.  
 
 

 
Table 8 Results of MIMO MPC (Structure 4) 

Case 1 4 3 4 

Hc 5 5 5 5 

Hp 5 Shrunk 
Shrun

k Shrunk 

Input Weights 
[104 

1] 
[104 10] 

[104 
10] 

[104 10] 

Output 
Weights 

[103 
1] [103 1] 

[103 
1] [103 1] 

Smax 1.225 1.196 1.196 1.203 

AM ( tf) 0.456 0.433 0.433 0.466 

CV(tf) 
23.23

8 23.008 
23.00

8 22.305 

V(tf) 35.23 34.679 
34.67

9 34.798 

wc(tf) 0.392 0.374 0.374 0.37 
 

 

VII.  CONCLUSIONS 

The study of two SISO and two MIMO cases of MPC 
with linear process model for a batch sugar crystallizer is 
shortly reported in this work.  The conditions of all 
experiments performed are summarised in Tables 1 and 2 
and the linear models are extracted by the process 
simulator developed in Georgieva, et al.,2003. The SISO 
cases seem to guarantee more satisfactory end point 
quality of the process. However, only the MPC of 
supersaturation manipulating the steam flowrate  
(Structure 2) makes feasible all conflicting objectives. 
Improved results are expected with a nonlinear model in 
the MPC scheme, which is not discussed in this paper but 
work on it is now in progress. 
 

.APPENDIX 
 

A1. SISO linear model, eq. (1): 
 
a) Classical identification of SISO linear model of 

Structure 1  
 
A=[1.0  -1.517  0.4377 0.377 -0.035  -0.697  0.4453] 
 
B=[-0.2465    0.1597    0.0246   -0.1982    0.1118] 
 
b) Double-test identification of SISO linear model of 

Structure 1 
 
A=[1.0 -1.476  0.172   0.376  -0.157   0.069    0.0243] 
 
B=[-0.0934    0.1005    0.0055   -0.0097] 
 
c) Classical identification of SISO linear model of 

Structure 2 
 
A= [1.0 -2.297 1.743 -1.055   1.119   -0.557    0.0469] 
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B= [-0.0017    0.0077   -0.0145    0.0114   -0.0032] 
 
d) Double-test identification of SISO linear model of 

Structure 2 
 
A=[1.0  -0.0027  -1.061   -0.47   0.016    0.4    0.1551] 
 
B=[ 0.0054    0.0040   -0.0049   -0.0034] 
 
A2. MIMO linear model, eq. (5):  
 
 a) MIMO linear model of Structure 3 
 
A1=[1.0   -3.628   5.03  -3.6  1.8  -0.673  -0.036  0.11] 
 
A2=[ 1.0   -3.565    4.902   -3.734    2.4897   -1.677    

0.785 -0.31    0.139   -0.038    0.008] 
 
B11=[ -0.1885    0.4620   -0.3854    0.1956   -0.1205    

0.0230    0.0060 0.0077] 
 
B12=[ -0.036   0.076   -0.019   -0.041    0.014    0.006] 
B21=[ -2.2741    6.4485   -6.2353    2.6879   -1.2478    

0.8353   -0.2772 0.0627]    
 
B22=[ 2.2235   -7.2479    9.9931   -9.0508    6.5667   -

3.4479    1.4080 -0.5101    0.0651] 
 
b)  MIMO linear model of Structure 4 
 
A1=[1.0  -3.628  5.03  -3.5997  1.8  -0.673   -0.036  

0.107] 
 
A2 =[1.0   -6.273   16.87  -25.29   22.9577  -12.7801    

4.1765   -0.7017    0.0409] 
 
B11=[-0.19    0.46   -0.39    0.2   -0.12    0.02    0.01    

0.007] 
 
B12=[-0.036    0.076   -0.019   -0.041    0.014   0.006] 
 
B21=[ 0.0805   -0.3311    0.4927   -0.2656   -0.0593    

0.1202   -0.0405    0.0031] *10-3 

 
B22=[ 0.209   -0.7085    0.7199    0.2729   -1.2363    

1.1405   -0.4754    0.0779] *10-3 
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