REVISTA DODETUA, VOL. 4,N°¢ 9, JUNHO 2008

SISO versus MIMO model based predictive control stuctures —a fed-batch
crystallizer case study

Luis Sanchez Dedi6s, Petia Georgieva and Sebd&tigmde Azevedo

Resumo — Este artigo é focado em estudo comparativo de
quatro estruturas de controlo preditivo baseado enmodelos
lineares, desenhado para o processo de cristalizagdor lotes.
Dois esquemas de controlo do tipo uma entrada - unsaida e
dois esquemas do tipo varias entradas - varias safel sdo
analisados em relacdo a qualidade do produto finalOs
modelos lineares sédo determinados através de duasiicas
alternativas de identificagdo baseadas em um testai dois
testes de recolha de dados. Os resultados do estudostram
que as estruturas uma entrada - uma saida levam raelhor
qualidade do produto final. No entanto unicamente @ontrolo
da sobresaturacdo (a saida) através de taxa de vap(a
entrada) consegue satisfazer todos os objectivos plmcesso.

Abstract — This work is focused on a comparative study of
four structures of linear model predictive control (LMPC)
for a fed batch crystallization process. Two singldnput
single output (SISO) and two multiple input multiple output
(MIMO) control schemes are analysed with respect tdhe
final process quality achieved. The linear models rpiired in
the controller structures are extracted applying two
identification alternatives termed as classical (om test) and
double test identification. The SISO cases seem toaantee
more satisfactory end point quality of the processHowever,
only the LMPC of the supersaturation manipulating te
steam flowrate makes feasible all conflicting contd
objectives.

[. INTRODUCTION

During the last decade the model based predictweral
(MPC) became an attractive control strategy impleee

in a variety of process industries. However, it damn
considered as industrial alternative only for combius
and predominantly linear processes (Qin and Badijewe
2003). The application of MPC for batch nonlineases

is still far from being an industrial reality andpresents
an interesting theoretical and practical contrcligmge
(Balasubramhanya and Doyle, 2000). The batch a@r fe
batch mode is a typical production scheme for gelar
group of pharmaceutical,
chemical processes. It is related with the fornomabf a

control problem in terms of economic or performance
objective at the end of the process (Nagy and Braat
2003). For example, the crystallisation qualitgvaluated

by the particle size distribution (PSD) at the eridthe
process which is quantified by two parameters -fial
average (in mass) particle size (MA) and the final
coefficient of particle variation (CV). The mainailenge

of the batch production is the large batch to batch
variation of the final PSD. This lack of process
repeatability is caused mainly by improper conpolicy
and results in product recycling and loss increddieC,
being one of the approaches that inherently cae edth
process constraints, nonlinearities, and diffecdnjéctives
derived from economical or environmental consideret
(Morari and Lee, 1997), has the potential to overedhe
problem of the lack of repeatability and drive frecess

to its optimal state of profit maximization and tos
minimization.

The present work is focused on a comparative aisalys
between various scenarios of linear MPC implemeited
a batch white sugar crystallizer. Two Single InBirtgle
Output (SISO) and two Multiple Input Multiple Outpu
(MIMO) MPC schemes were compared with respecteo th
final process quality achieved. The linear modetsuired
in the controller structures were extracted applyiwo
identification approahces — classical (one test) double
test identification. The SISO scheme with a doulelst
identified model seem to guarantee more satisfaatad
point quality of the process. However, only onetloé
tested linear MPC scenarios (controlled output -
supersaturation, manipulated input - steam floyrate
makes feasible all conflicting control objectives.

II. PROCESOPERATION

Sugar production is characterized by strongly rioear
and non-stationary dynamics and goes naturallyutiivea
sequence of relatively independent stages: charging
concentration, seeding, setting the grain, cryztdibn
(the main phase), tightening and discharge ((Gewaget
al., 2003).

biotechnological, food and The feedback control policy is based on measuresrant

the flowrate, the temperature, the pressure, tireerst
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power and the supersaturation (by a refractometer).of the solution. However, due to a straightforweethtion

Measurements of these variables are usually avaifab between supersaturation and brix, the supersaturasi

a conventional crystallizer. considered as the controlled process output. Foremo
details with respect to the process see Georgietval.,

Charging: During the first stage the crystallizer is fed 2003.

with liquor until it covers approximately 4@ of the
vessel height. The process starts with vacuum yire sf
around 1bar (equal to the atmospheric pressure) and

Table 1.Process variables

reduces it up to 0.2®ar. When the vacuum pressure Name Notatio Average
reaches 0.%ar, the feed valve is completely open such n values
that _the feed flowrate is kept at its ma_lximum vaNuhen Liquor/Syrup feed F; 0.0057m°/s
the liquor covers 406 of the vessel height, the feed valve flowrate
is closed and the vacuum pressure needs some dime t Steam flowrate Fs 1.6m3/s
stabilize a_lround the value of 0.2Bar before the Water feed F, om/s
concentration stage starts. flowrate

) _ ) Feed temperature T 65 °C
Concentration The next phase is the concentration. The .
liquor is concentrated by evaporation, under vaguumtil Steam temperature T 140 °C
supersaturation reaches a predefined value (typical Brix of feed Bx; 0.7]]
1.11). A’F this stage seed cr_ystals are mtroduc@l uhe Steam pressure P, 2 bar
pan to induce the production of crystals. This lig t o
beginning of the third (crystallisation) phase. Temper(_':lture of T 72.4944 C

massecuite (average)

Crystallisation (main phase)n this phase as evaporation Véccum pressure Ry 0.25bar
takes place further liquor or water is added togha in Brlx_ of the Bxy 2 bar
order to guarantee crystal growth at a controlled solution (average)
supersaturation level and to increase total costerft Stirring power w 15000 W

sugar in the pan. Near to the end of this phasefand
economical reasons, the liquor is replaced by ojtiee
of lower purity (termed syrup).

Table 2. Reference values and restrictions of m®ageality variables

Tightening: Once the pan is full the feeding is closed. Name Notation Value

The tightening stage consists principally in wajtiantil t; - final time

the suspension reaches the reference consistemigh w Average (in  AM (t) 0.5-0.6 mm
corresponds to a volume fraction of crystals eqod.5. mass) crystal size (ref.)

The supersaturation is not a controlled variablehé Coeff. of CV(t) below 25%
stage because due to the current conditions in the variation

crystallizer, the crystallization rate is high aihgrevents Volume V (ty) 35 nt
the supersaturation of going out of the metastablee. (max)

The stage is over when the stirrer power reaches th Supersaturation

maximum value of 50A. The steam valve is closed, the S 1.3 (max)
water pump of the barometric condenser and theestire

turned off. Now the suspension is ready to be wéda Mass fraction w, (t) 40 % (min)
and centrifuged. of crystals

The different phases are comparatively independent

process states and since the crystallisation isnihé

stage responsible for the final product qualityémms of

PSD, this study is focused on analysing several CMP I1l. IDENTIFICATION ALTERNATIVES
strategies specifically for the crystallization paa

Based on a set of industrial data collected ovemab Attempts to extract a representative linear model

white sugar production cycles, average valueshfiemain

describing all phases of the process, from charging

process variables were determined and summarised imentrifugation, are most likely to fail. Howevenoking

Table 1. Table 2 consists of the reference values a
restrictions of the process quality variables eatdd at
the batch endt).

The supersaturation is the main driving force oé th
crystallization but the actual measured variablhésbrix

for a reliable linear approximation only for the
crystallization phase is worth to study. The gehera
structure of the input-output linear model assunfied
identification  has the following mathematical
representation (Rossiter, 2003):



REVISTA DODETUA, VOL. 4,N°¢ 9, JUNHO 2008

n R. -1
y(t) = %ui (t) +e(t) 1)

i=1
where p is the number of model inputs. The orders of

the numeratoB, (q™*) and the denominato(q™) are

n, and n, respectively, which meansyfn,) parameters
are to be adjusted.

The first identification step is to specify the nebthputs
and outputs.
variables that mainly influence the final productatity.
The feed flowrate, steam flowrate and vacuum pressu
are usually the manipulated physical inputs in the
crystallization industry and therefore they are sidered
as possible model inputs. As for the outputs, the
supersaturation, being the driving force for the
crystallization phenomenon, the temperature of the
massecuite and the average in mass crystal siz§ &/
the most important control variables and are asduase
possible model outputs.

The choice ofn, and n, is crucial in terms of model
reliability, complexity and sensitivity. Their fihavalues
were chosen after a number of tests minimizing the
Relative Mean Square (RMS) error defined as follows

)

Where y/ are the data related to a process variable

considered as the output y"is the respective model

outputi, Kk is the sampling instant amdis total number of
samples.

In the identification tests, the inputs are gerextahs
random variations limited by maximum of 10% arotinel
average values collected in Table 1. The inputsewer
simulated, in Matlab, as pseudo-random binary $sgna
(PRBS) invoking the Simulink signal builder. The
sampling period was fixed as 30 sec.

Remark: For the second half of the crystallization the
random generation policy applied to the feed flaterof
syrup led to a very small quantity of massecuitehat
phase end. Therefore the identification proceedé@td w
empirically determined feed flow rate such that fimal
volume approaches the respective reference valkengi
in Table 2.

Two identification strategies were investigated.

A. Classical (one test) identification

The randomly generated inputs, § are introduced either

to the process (if experiments with the process are
allowed), or to a very detailed process model siatilate
the process (the case in this work). The procegsoreses
are recorded ¥;) and the respective mean values are

computed (1iean, Yimean). Then the coefficients of the
linear model (1) are extracted supplying as inputs

The main candidates are those process$} —Ujmean and as outputy —Yi,ean. This classical

identification requires only one test for ident#fimon as it
is illustrated in Fig. 1 for the case of two inpatsd two
outputs ( =1,2).

—’\/y‘
— N n

11

» Y1-¥imean

Process

Process
identification

U101, mean

U2 U2, mean > Y2-Y2. mean

Fig. 1 Classical (one test) identification

B. Double test identification

An alternative of the so-called classical idenéfion is
proposed here where prior to the test with randomly
generated inputs ), a test with constant inputs

(u;:uimean) is performed and the process reactions

(y; ,yi') are recorded, see Fig. 2. Next, the coefficiefts
the linear model (1) were extracted supplying gauis
u; —u; and as outputg - y; .

w = I Process — / v
L — —
— \// Y1
Process
— S w
Process — iy’
identification
Wy > »ny
Fig. 2 Double-test identification
This double test identification requires more

computational efforts than the classical approdch,has
the potential to provide a better approximation.

Remark: In case base input trajectories can be
determined, the first test may be performed withséhbase
trajectories and not necessarily with the congtgnits.
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IV. MODEL PREDICTIVECONTROL

Linear MPC is an optimisation-based multivariable
constrained control technique that uses a lineaahc
model for the prediction of the process outputs.eAth
sampling time the linear model predicts future pssc
responses to potential control signals over thaliptien
horizon @y). The predictions are supplied to an
optimization procedure to determine the values tof t
control action over a specified control horizdi)( that
minimize the following performance index

®3)

C

4> (U —U,)

k=1

The prediction horizorH,, is the number of time steps
over which the prediction errors are minimized dhd
control horizonH, is the number of time steps over which
the control increments are minimized,is the desired
response (the reference) agd is the model response.
Uy, Ugs,Uy_are tentative future values of the control

input, which are limited by ug,and u.,and

parameterized as peace wise constapaind A, are the

output and the input weights respectively, which
determine the contribution of each of the componétite
output error and the control increments) of the
performance index (3). The length of the prediction
horizon is crucial for achieving tracking and sli&i For
small values oH,, the tracking deteriorates but for hibly
values the bang-bang behaviour of the process mpmgtit

be a real problem. The MPC controller requires a
significant amount of on-line computation, sincee th
optimization (3) is performed at each sample time t
compute the optimal control input. At each stepychke
first control action is implemented to the process.

u

V. SISOLINEAR MPC

Single Input Single Output (SISO) MPC based on a
linear process model is the first control strategy
consider. The control objective is to get a higlalijy
final product which is quantified by a desired finserage
crystal size, AM 1), by minimisation of the final
coefficient of variation, C\{) and by maximisation of the
final crystal contentv.(t;)) . This end point quality is going
to be achieved by two different structures depemndin
the selected control input, manipulating the feledvifate
(Structure 1) or the steam flowrate (Structuresgh that
the supersaturation follows a previously determifigdan
optimization scheme) reference trajectory (see @eca
and Feyo de Azevedo, 2006.

The aim of this study is also to analyse the infliee of
the two identification approaches discussed inicec3.
Therefore, for each of the two SISO control streesythe
model obtained by classical identification and thedel
obtained by double test identification were impleted.

A. MPC of supersaturation manipulatingfeed

flowrate.(Structure 1)

The results of five tests for MPC of the supersatan
manipulating the feed flowrate (Structure 1) are
summarized in Table 3 and Table 4. The model (1) is
obtained either by classical identification (in T&aB) with
n, =5 andn,=7 or by doublet test identification (in Table
4) with n, =4 and n;=7. In both cases the selected
polynomial degrees guaranteed an RMS error beldw 0.
The identified parameters of the models are induthe
the Appendix. The control sampling time was chdselne
equal to the identification sampling tim& = 30s and
A, =1. The effect of varying the main controller

parametersH,, H; and A, is studied. The prediction

horizon is either shifted by usually one sampliingetinto
the future orshrunk (Nagy et al., 2005) in case it was
initially equal to the batch duration. Hence, theusik H,
or H. is calculated as follows:

(tf - tactual)

T (4)

Nshrunk =

Wheret; is the final time and,¢y4is the current time. In
the first three columns of Table 3 and 4, the effefc
increasing the prediction horizonH) and keeping
constant the control horizoi{) is studied. Note that it
improves the end point objectives AM) @ndw,(t;) but to
the expense of worse ¥( Applying eq. (4) to determine
the shrunk prediction horizon (column 4) and cadntro
horizon (column 5) has the effect of reducing thpui
weight A, in (3) to get the desired final time values of the

quality variables.
B MPC of supersaturation manipulating steam
flowrate (Structure 2)

The same tests, as in the previous subsectioMRE of
supersaturation are summarised in Table 5 and Tablg
now manipulating the steam flowrate (Structure ™he
linear models were obtained again by classical
identification (in Table 5) withn, =5 andn,=7 and by
double test identification (in Table 6) witly =4 andn,=7.
The identified parameters are listed in the Appendi
(section Al). The general conclusion is that the QP
scheme with model based on the classical idertiifica
cannot guarantee sufficient quality with respecAl (t;)

and w(t). Note that for no one of the five cases
considered the conflicting end point objectives are
simultaneously feasible.
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In contrast to the above conclusions, the MPC sehem  a (z7%)y, (t) =B, (27 })uy(t =1) +By (2 H)u,(t 1)
with model based on the double-test identificatigives a a a (5)
quite stable and not sensible, to small controbpeter  A2(Z )Y2(t) =Bay(Z Juy(t — D) +Bpp(z Jup(t -1)
changes, results. In fact, this is the only scheunere all B.
conflicting end point objectives are simultaneously where the identified polynomialéyand °' for

feasible for all cases (see Table 6). each of the two structures are summarised in the
Appendix (section A2).

Table 3. MPC (Structure 1) with model obtained lagsical

identification Table 5. MPC (Structure 2) with model obtained tasslcal

identification

Case 1 2 3 4 5
H. 5 5 5 Shrunk Case 1 2 3 4 5
Ho 5 |6 10 | Shrunk| Shrunk Shrun
2, 10 |10 |10 |1 1 He 5 |5 5 |5 Ik
Shrun| Shrun
Shax 1.21 (1.21 |1.21| 1.19 1.21 Hy 5 5 15 |k k
AM (t7) 0.47 |0.50 | 0.59| 0.44 | 0.59 Ay 1 0.1 1 1 1
CV(t) 23.29(23.34(23.40 23.29 | 23.39 S 1.20| 1.20 1.13 1.19 1.19
V(tr) 30.58[28.62|24.33 32.18 | 24.27 AM (t) 0.47| 045 | 0.14 0.32 0.32
W(ty) 0.43 |0.46 | 0.55| 0.40 | 0.55 22.7
CV(t) 8 22.80 5.01| 22.78| 22.89
35.3 35.4
_ _ V(t) 3 34.82/ 5 35.21| 35.01
Table 4. MPC (Structure l).\/\.nth model obtained bylle-test Wc(tf) 039 0.38 002 0.27 027
identification
Case 1 4 5
H. 8 S Shrunk Table 6. MPC (Structure 2) with model obtained bylde-test
Hp 5 6 10 | Shrunshrunk identification
Ay 10 10 10 1 1
Case 1 2 3 4 5
Shax 121 |1.21 |1.20| 1.31| 131 He 5 5 5 5 Shrunk
AM (t;) 0.49 |0.50 | 0.62| 0.47| 0.48 H, 5 5 15 Shrunkl Shrun
CV(t) 23.34[23.37(23.42| 21.42 21.40 A, 1 0.1 1 1 1
V(t) 28.94128.29|23.47) 35.28 34.89 Shas 1.2005|1.1881] 1.1928 1.195 1.1833
we(to) 0.46 |0.47 | 0.57| 0.35| 0.36 AM (t) 0.4811 | 0.5373| 0.5252 0.5305 0.5292
CV(t;) 22.799223.168422.975823.528723.1891
VI. MIMO LINEAR MPC V(t;) 35.106634.862135.174 | 34.747[B4.9551
We(ty) 0.402 |0.4655| 0.4442 0.4735 0.4582
Multiple Input Multiple Output (MIMO) MPC based on
a linear process model is the second control glyate
considered. Our study is limited for the structofetwo A MPC of supersaturation and temperature

inputs - two outputs (TITO).
Among the various TITO structures tested, in thipqr
are considered the following ones: i) MPC of the

supgrsatu_ration and the temperature of massecuite The final control objectives (the same as for th8Gs

manipulating the fe_z_ed flow rate and the vacuum qunes cases), are to get a high quality final productntified by

(Structure 3) and ii) MPC of the supersaturatiod &1 0 AM (), CV(t) andw(t). However, the operational

final value of AM manipulating the same inputs (8ture o) objectives are different for each of theistures.

4). Based on the encouraging results with the dotdst  £o; syrycture 3 the aim is by manipulating simuusly

identification of the SISO models, now TITO linear o feed flowrate and the vacuum pressure, to ftee

models obtained only by double test identificatiare g ,yersaturation and the temperature of massecaite t

considered. The generalized input-output modelc&ire g1,y reference trajectories. Results of the MRAled

has the following mathematical representation to the two structures are summarised in Table 78afthe
input and output weights were chosen (by trial andrs)

manipulating feed flow rate and vacuum pressure
(Structure 3)
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to compensate the different ranges of the two sigund Case 1 4 3 4
the two outputs respectively and to determine their He 5 5 5 5
different contribution to the performance indextruSture Shrun
3 and Structure 4 seem to be equally not sensttive H 5 Shrunk| k Shrunk
variations in controller parameters. The valuetheffinal . [10° [10°
quality variables in the two structures are quitmilar. Input Weights| 1] [10% 10] 10] [10% 10]
This can be explained only with the clear priowtfythe Output [10° [10°
supersaturation as the main controlled variabldatertwo Weights 1] [16°1] |1] [10° 1]
structures. The temperature of massecuite and nide e
value of AM have less influence on the optimal eabf Snas 1.225| 1196 | 1.196] 1.203
3). AM (t) 0.456| 0.433 | 0.433] 0.466
23.23 23.00
CV(ty 8 23.008|8 22.305
34.67
Table 7. Results of MIMO MPC (Structure 3) V(t) 35.23| 34.679|9 34.798
Case 1 5 3 ) w(ty) 0.392| 0.374 0.374 0.37
H. 5 5 5 5
Shrun
Hp 5 15 30 |k VIl. CONCLUSIONS
[10* | [10* | [ao* | ao*
Input Weights| 1] 1] 1] 1] The study of two SISO and two MIMO cases of MPC
Output [10° | [10® | [10° | [10° with linear process model for a batch sugar crijstal is
Weights 1] 1] 1] 1] shortly reported in this work. The conditions df a
Sia 1.23 1228 1.221| 1.221 experiment_s performed are summarised in Tablesd12an
and the linear models are extracted by the process
AM (t;) 0.46 0.434 0.434| 0.441 simulator developed in Georgievat, al.2003. The SISO
23.11 23.01 cases seem to guarantee more satisfactory end point
CV(t) 23.30| 2 23.03/6 quality of the process. However, only the MPC of
34.84 34.94 supersaturation manipulating the steam flowrate
V(t) 33.58/0 34.84| 7 (Structure 2) makes feasible all conflicting objees.
We(t) 0.40 0.374 0.372| 0.376 Improved results are expected with a nonlinear rhade
the MPC scheme, which is not discussed in this ipape
work on it is now in progress.
APPENDIX
B MPC of supersaturation and AM (tf)

manipulating  feed flow rate and vacuum Al. SISO linear model, eq. (1):
pressure (Structure 4)
a) Classical identification of SISO linear model of
The operational goals, for Structure 4, are obthihg Structure 1
manipulating simultaneously the feed flowrate ahe t
vacuum pressure, to force the supersaturation lkowfca A=[1.0 -1.517 0.4377 0.377 -0.035 -0.697 0.4453
reference trajectory and to get a referenced fikisl
value. Note that in both structures (Structure 3l an B=[-0.2465 0.1597 0.0246 -0.1982 0.1118]
Structure 4) the final AM and the final crystal temt are
slightly below the desired values and in all cafes b) Double-test identification of SISO linear mod
results are worse than in Structure 2 (SISO MPC of Structure 1
supersaturation manipulating the steam flowrate)is T
result goes beyond theoretical proofs and can be A=[1.0-1.476 0.172 0.376 -0.157 0.069 2.3
interpreted with a significant discrepancy betwebp
linear model part of the MPC structure and the itadly B=[-0.0934 0.1005 0.0055 -0.0097]
nonlinear nature of the process in hand.
c) Classical identification of SISO linear model of
Structure 2

Table 8 Results of MIMO MPC (Structure 4) A=[1.0-2.297 1.743-1.055 1.119 -0.557 469)
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B=[-0.0017 0.0077 -0.0145 0.0114 -0.J032

1.
d) Double-test identification of SISO linear modsl
Structure 2

2.
A=[1.0 -0.0027 -1.061 -0.47 0.016 0.4.1851]
B=[ 0.0054 0.0040 -0.0049 -0.0034]

3.
A2. MIMO linear model, eq. (5):

a) MIMO linear model of Structure 3 4.

A;=[1.0 -3.628 5.03 -3.6 1.8 -0.673 -0.03810

5.
A,=[ 1.0 -3.565 4.902 -3.734 24897 -Y.67
0.785-0.31 0.139 -0.038 0.008] 6.
By,=[ -0.1885 0.4620 -0.3854  0.1956 -0.1205
0.0230 0.0060 0.0077] 7.
B,,=[-0.036 0.076 -0.019 -0.041 0.014 08]0 8.
B, =[ -2.2741  6.4485 -6.2353 2.6879 -1.2478
0.8353 -0.2772 0.0627]
B,=[ 2.2235 -7.2479 9.9931 -9.0508 6.5667
3.4479 1.4080-0.5101 0.0651]
b) MIMO linear model of Structure 4
A;=[1.0 -3.628 5.03 -3.5997 1.8 -0.673 -0.036
0.107]
A, =[1.0 -6.273 16.87 -25.29 229577 -12.7801
4.1765 -0.7017 0.0409]
B,,=[-0.19 046 -0.39 0.2 -0.12 0.02.010
0.007]

B,,=[-0.036 0.076 -0.019 -0.041 0.014 6]00

B,=[ 0.0805 -0.3311 0.4927 -0.2656 -0.0593
0.1202 -0.0405 0.0031] *f0
B,=[ 0.209 -0.7085 0.7199 0.2729 -1.2363

1.1405 -0.4754 0.0779] *f0
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