
ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 1, JUNHO 2009

89

Abstract: Diverse monitoring and control applications
require that a host computer communicates with one or
several remote units (sensors, actuators, …). Usual off-the-
shelf communication links require that both host computer
and remote units adapt themselves to data protocols or
physical properties of the devices that implement the link.
Since almost all remote devices have a built-in
microprocessor, which usually has one or more UART
transceiver, a communication link was designed to work
over this interface with the objective of minimizing the
hardware and firmware changes required on both ends of
the link. This article presents the design and
implementation details of this communication link, which
was denominated Remote Serial Cable – RSC. The RSC is a
hardware interface that allows bidirectional communication
between remote equipment and host computer, being that
communication channel seen by both ends as a transparent
RS232 connection, as if they were connected directly
through a standard serial cable. It uses the GSM network to
communicate between RSC Units, transporting the data
through SMS, Circuit Switched Data (CSD), or GPRS.

I. INTRODUCTION

NOWADAYS, it is common to find applications where
there is the need of a host computer to gather data from a
number of widespread sensors, or to control a group of
remotely located actuators or devices. And with the
mobility tendency of people and equipment, this host
computer does not necessarily need to be a fixed desktop
computer on a server room, but can be a laptop or even a
PDA. Also, the remote equipment can be in motion, for
some applications. Since the nature of the remote devices
is usually very simple in terms of processing capabilities,
having in most cases a simple microprocessor controlling
the device functions, it was thought in the presented
work that it could be possible to use the basic hardware
features presented in such remote devices in order to
communicate bi-directionally with the host computer,
causing the least possible changes on the remote devices,
and keeping these as simple as possible (from the
hardware perspective). It was then recognized that almost
microprocessors have available an UART transceiver,
which is, in most cases, accessible though a RS232 serial
port (for local configuration of the devices, and other
operations). With this in mind, a communication link,
named Remote Serial Cable – RSC, was designed and

implemented using hardware units (RSCU) to convert the
RS232 channel into a communication over a GSM
network (between two RSCUs) converting again, at the
other end, the data back to the RS232 protocol. This
operation is performed in a transparent way from the
point of view of the end-devices, that is, either host or
remote equipment look at the communication link as if it
was a standard serial cable connecting them. Fig.1
illustrates the concept of the implemented link.

Depending on the application, the communication
required between host and remote devices can have
different usage characteristics, in terms of channel usage
with time. That is, some applications may require an
open link for a very short period once a day, or once a
week, and other applications may require data to be
sent/received every 5 seconds, for example. In order to
accommodate these distinct operation modes, enabling a
configuration of the link that would minimize the
communication costs, the RSCUs can operate in SMS
mode (for sporadic low volume data communication), in
CSD mode (for sporadic high volume data
communication) and also in GPRS mode (for frequent,
open channel, data communication). In the latter case, no
RSCU is required at the host computer because it simply
uses a TCP/IP port to connect to the remote units (which
continue to look at the link as if it was an RS232 link).

The following sections present the hardware details of
the RSCU devices, and also the description of some of
the firmware features that were implemented.

I. HARDWARE OVERVIEW

This section describes the hardware details of a RSCU.

Fig.2 shows a block diagram of its main hardware
blocks. It should be mentioned that all RSCUs are
exactly equal in terms of hardware construction. There is
no difference between the host-end RSCU and the remote
device-end RSCU.

Development of a Remote Serial Cable Over GSM

Paulo J. Nóbrega, Telmo R. Cunha

Fig.1 - Transparent RS232 communication between remote and host

equipment, over a GSM network, with RSC units controlling the link.

 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 1, JUNHO 2009

90

Starting with the power supply unit, this was designed
to allow a high range of DC power voltages, from 7V to
40V, so that it could be used as is in diverse applications.
As some remote equipment have to rely on batteries for
their power supply, and in order to reduce unnecessary
power consumption, a DC-DC switched converter was
implemented, capable of delivering 3A (mode than the
necessary to enable the GSM communication).
The unit is controlled by a microcontroller, a PIC18

family MCU, which interfaces the communications
between the external UART and the GSM module. The
microcontroller is capable of buffering the
communication data from/to the UART or the GMS
module, and of initiating the peripherals with the
configuration provided by a hardware switch, or by a
configuration word stored in the MCU flash (the
configuration reference is selectable). This configuration
consists on the baud rate used for serial communication,
the GSM operation mode (CSD, SMS or GPRS), and
other less relevant parameters.
The UART has 2 internal FIFOs, one for transmission

and other for reception, each with 16 bytes. The main
function of the UART is to perform serial to parallel data
conversion, so the microcontroller can exchange
communication (or configuration) data with the UART
through its I/O ports.
It should be mentioned that the selected MCU only

contained a single internal USART, which was dedicated
to the communication between MCU and GSM module.
Also foreseeing possible future extensions for the
RSCUs, aiming to simultaneous communication with
more than one remote equipment per RSCU, it was
decided to use a general external UART in this stage.
The UART has a programmable baud rate generator,

and a selectable auto flow control feature that can
significantly reduce software overload on the
microcontroller and increase the RSCU efficiency by
automatically controlling the serial flow control signals
(RTS and CTS).
To interface the external equipment, a line driver was

inserted in order to switch the serial signal level from
TTL (at the UART side) to RS232 (at the external
equipment side). Also, this driver has built-in protections
that avoid voltage peaks (or over-voltages caused by
device misuse or equipment malfunction) to damage the
RSCU internal components.
The connector to the external equipment is a serial

female DB9 plug, since the RSCU is seen as a DCE
(Data Circuit-terminating Equipment) unit.

The connection to the GSM network is made by a dual-

band GSM/GPRS module (the GM862-GPRS from Telit
Mobile Terminals, S.p.A.) that allows data calls (CSD),
GPRS and SMS handling. It has an embedded SIM card
reader, and exchanges data and configuration commands
with the microcontroller, through the connection between
the microcontroller and GSM module USARTs. The
module operates in two possible modes: data mode (all
the data received by the module is send to the network),
and command mode, being the communication protocol
based on AT commands.
Also considered in the RSCU implementation was a

LED interface which allows a quick overview of the
RSCU status at every instant. This contemplates LEDs
indicating communication activity between external
equipment and the MCU (receiving and transmitting),
and between the MCU and the GSM module (receiving
and transmitting). The MCU execution status was also
mapped into a LED interface which, through the
frequency of its blinking, would indicate if the MCU was
in normal operation, if it encountered a problem, if it was
running in debug mode or in boot mode, and so on. Also,
the GSM module status could be monitored through
LEDs, indicating if it was connected to the GSM
network, if a call was (or not) currently established, etc.
The PCB design of the RSCU included, for debug

purposes, a series of inside connectors to which a
computer can be plugged into. For example, it is possible
for a debug laptop to snoop the data exchanged between
MCU and GSM module, or even to overwrite the MCU
commands for the GSM module.
Two views of the implemented RSC units are shown in

Fig.3 and Fig.4, presenting the outside view and the PCB
board, respectively.

Fig.2 - Basic block diagram of the RSC unit.

Fig.3 - Outside view of the RSC unit.

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 1, JUNHO 2009

91

II. OPERATION

As referred in the above sections, the RSC has 3
different operation modes: SMS, CSD and GPRS. In
SMS mode, all serial data received from the equipment
are converted into SMS messages, and all SMS messages
received from the network are sent to the serial interface,
to the external equipment, after being parsed by the
microcontroller firmware. The SMS mode is preferred
for exchanges of small sporadic bursts of data. A SMS
message is sent whenever a total of 160 (maximum size
of an SMS) bytes are received from the external
equipment, or when the equipment stops sending data for
more that a certain time period (which can be
programmed). In the other direction, as soon as a SMS is
received from the network, its data field is sent to the
external equipment. Note that, in this mode, the time
required for data to arrive its destiny is dependant of the
GSM network efficiency.
More adjusted to real time applications which

sporadically transfer large data amounts is the CSD
mode. This mode has real time specifications similar to a
voice call, which requires a small delay between both
callers. In this mode, in order to exchange data, a call
must be established between both RSC units. This takes
about 30 seconds and is triggered as soon as the first
serial data byte is received from the external equipment.
The data call ends when one of the RSC units stops the
call, or when a time out condition is reached from the
reception of the last serial data byte from the external
equipment. This time out is adjustable. Another
advantage of CSD mode is that the communication
channel is full duplex.
In GPRS mode, data is sent directly to the internet, so

there is no reserved path or dedicated circuit. The
GSM/GPRS module organizes data into TCP/IP packets
and sends them to the mobile operator’s network where
they will be forwarded to their destiny, through the
network routers. This mode of operation requires the
base computer to have internet access and a known static
public IP address. When the RSC unit is configured to

work in GPRS mode, as soon as it is powered, it
establishes a TCP/IP connection to the base computer so
data can be exchanged. Note that the base computer IP is
known by the remote RSC unit, but usually there is no
reserved static IP address for the GSM/GPRS module, so
its IP is dynamic and unknown to the base computer.
GPRS mode is advisable for applications that are
constantly exchanging data, either in high or low volume.

III. CONFIGURATIONS

It’s possible to configure communication parameters,
mode of operation, and even change the firmware of the
RSC unit without any extra hardware.
There is a hardware dipswitch that allows choosing the

external equipment serial baud rate, the RSC mode (or
leaving this choice to the PC software), and also to force
the unit to run in the boot/debug mode.
In boot/debug mode, after the RSC unit resets, it listens

to its serial port and if the PC wants to send a new
firmware configuration, the RSC unit starts its
bootloader. Note that the RSC unit bootloader was
specially designed, because the firmware is uploaded to
the microcontroller through the external UART
connected to the microcontroller I/O pins. It is possible
with the developed bootloader (and associated PC
loader), to upload to the microcontroller’s flash, special
registers and EEPROM. Taking advantage of this feature,
the RSCU configuration is kept in the microcontroller’s
EEPROM, and an API for the PC was developed, which
allows on-line configuration of the RSCU operation
mode.
With this API, the user can choose the communication

mode, and the individual parameters for each
communication mode.
In SMS mode only the destiny’s SIM phone number

needs to be configured.
When in CSD mode, the user needs to configure not

only the destiny’s SIM phone number, but also the time
out threshold from the last received byte (after which the
RSC will end the call).
If the GPRS mode is chosen, the SIM operator’s access

point name, login and password will have to be
configured. Also, the destination IP address and port
(those of the base computer) need to be specified.
When boot/debug mode is active, all the steps taken by

the RSC unit are reported back to the serial port. This
mode is helpful mostly when the RSC is first time
installed or a change was made to the system firmware.
In normal operation, this option remains disabled,
otherwise the reports of the RSC unit would be
interpreted as communication data.

IV. THE RSC UNIT FIRMWARE

The microcontroller is the responsible of initiating the
UART, the GSM/GPRS module and itself according to
the predefined configuration. After the entire

Fig.4 - Inside view of the RSC unit.

 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 1, JUNHO 2009

92

configuration is executed, the microcontroller acts like a
bridge between the UART and the GSM/GPRS module.
Excluding the GSM module’s internal FIFOs, there are

4 FIFOs in the RSC unit. Two of them are in the UART
and can store 16 bytes, the other two are circular buffers
in the microcontroller’s RAM that can store each 256
bytes of data. Fig.5 shows an overall buffering scheme
implemented in the microcontroller.

The microcontroller’s transmitting FIFO is required for

buffering data while, for instance, the microcontroller is
waiting for the GSM/GPRS module to establish a
connection.
The other FIFO is required for buffering data while the

external equipment is busy and data is arriving from the
GSM/GPRS module. Data is automatically input in both
FIFOs. After a byte is received into the UART or the
microcontroller’s USART, the microcontroller interrupt
service routine is executed, processing it and storing the
byte in the respective FIFO. As soon as the external
device, or the GSM/GPRS module, is ready to receive
that byte, the byte is sent towards its destiny.

V. CONCLUSIONS

A flexible and easy to install solution was implemented
which enables the serial communication between two
remote devices using the GSM network in a totally
transparent way for those end-devices. To these, the

communication link would be (in terms of hardware and
firmware) as if they were connected through a direct
RS232 serial cable. Through the developed RSC units, a
base computer can be connected to diverse remote
devices without having to drastically modify the
hardware or software of such remote equipment.
A wide range of configuration settings was considered

in the RSC system design so that it can be easily adapted
to applications of distinct communication requirements.
For example, and to allow an optimization of the costs
associated with communications, the GSM mode can be
chosen from SMS-based (sporadic and small volume data
transfers), CSD-based (sporadic but medium/large
volume transfers) and GPRS-based (frequent data
transfers).

REFERENCES

[1] C. Petzold, “Programming Windows,” Microsoft Press.

[2] B. Miles, “the Forger's Win32 API Tutorial”, 1998-2006.

Available:

http://winprog.org/tutorial/

[3] M. Shepherd, Available:

http://www.gomorgan89.com/winsock/winsock.html

[4] Wikipedia.org. Available:

http://en.wikipedia.org/wiki/Hayes_command_set

http://en.wikipedia.org/wiki/Circuit_Switched_Data

http://en.wikipedia.org/wiki/GPRS

[5] www.gs-modem.de, Available:

http://www.gsm-modem.de/sms-pdu-mode.html

[6] R. Fosler, R. Richey, “A FLASH Bootloader for PIC16 and

PIC18 Devices, ” Microchip Technology Inc, 2002

Fig.5 - Simple scheme of the microcontroller’s buffering scheme.

