
Electrónica e Telecomunicações, VOL. 5, N◦ 1, JUNHO 2009 69

The Base Station Application of the CAMBADA
Robotic Soccer Team

Nuno Figueiredo, António Neves, Nuno Lau, José Azevedo, Artur Pereira and Gustavo Corrente

Abstract – The base station is the software appli-

cation responsible to provide automatic processing

of soccer game refereeing events and to allow high

level monitoring and control of the robots internal

states. This paper presents the base station devel-

oped for CAMBADA, the robotic soccer team of

the University of Aveiro. It describes the main re-

quirements and specifications of the base station

and presents the architecture of the application,

giving special attention to the description of the

main modules and to the connection between them.

It also describes the multi-window system, among

other issues, namely the classes implemented and

the mechanism of passing information among the

several modules.

Resumo – A estação base é a aplicação de software

responsável pelo processamento automático dos

eventos que ocorrem num jogo de futebol robótico e

pela monitorização e controlo do estado interno dos

robôs. O presente artigo descreve a estação base de-

senvolvida para a equipa CAMBADA, o projecto de

futebol robótico da Universidade de Aveiro. Neste

artigo são descritos os principais requisitos e especi-

ficações da aplicação, bem como a sua arquitectura,

dando especial atenção aos principais módulos e à

forma como eles se interligam e comunicam entre

si. O artigo descreve também o sistema de jane-

las múltiplas bem como algumas outras questões,

nomeadamente, as classes implementadas e o me-

canismo de passagem de informação para diversos

módulos do sistema.

I. Introduction

Robotic soccer is nowadays a popular research domain
in the area of multi-robot systems. RoboCup1 is an in-
ternational joint project to promote research in artifi-
cial intelligence, robotics and related fields. RoboCup
chose soccer as the main problem aiming at innova-
tions to be applied for socially relevant problems. It
includes several competition leagues, each one with a
specific emphasis, some only at software level, others
at both hardware and software, with single or multiple
agents, cooperative and competitive.
In the context of RoboCup, the Middle Size League

(MSL) is one of the most challenging. In this league,
each team is composed of up to 6 robots with a max-
imum size of 50cm × 50cm width, 80cm height and

1http://www.robocup.org/

a maximum weight of 40Kg, playing in a field of
18m×12m. The rules of the game are similar to the of-
ficial FIFA rules, with minor changes required to adapt
them for the playing robots [1].
The rules of this league establish several constraints

to simplify perception and world modeling. In partic-
ular, the ball is orange, the field is green, the field lines
are white and the players are black. The duration of a
game is 30 minutes, not including a half-time interval
of 5 minutes. The game is refereed by a human and
his orders are communicated to the teams using an ap-
plication called “referee box” operated by an assistant
referee. The referee box sends the referee orders to
the team through a wired LAN TCP link connected to
the external computer of each team. It is the team re-
sponsibility to communicate these orders to the robots
through the field wireless network.
No human interference is allowed during the games

except for removing malfunctioning robots and re-
entering robots in the game. Each robot is autonomous
and has its own sensorial means. They can communi-
cate among each other and with an external computer
through a wireless network. This external computer,
that has no sensor of any kind, runs the base station
application. The base station only “knows” what is
reported by the playing robots and the orders received
from the referee box. The agents should be able to
evaluate the state of the world and take decisions suit-
able to fulfill the cooperative team objective.
CAMBADA2, Cooperative Autonomous Mobile roBots
with Advanced Distributed Architecture, is the Middle
Size League Robotic Soccer team from the University
of Aveiro. The CAMBADA research project started in
2003, coordinated by the Transverse Activity on Intel-
ligent Robotics (ATRI)3 group of the Institute of Elec-
tronic and Telematic Engineering of Aveiro (IEETA)4.
Since then, it has involved people working on sev-
eral areas for building the mechanical structure of the
robot, its hardware architecture and controllers [2] and
the software development in areas such as image anal-
ysis and processing [3]-[7], sensor and information fu-
sion [8], reasoning and control [9].
Since its creation, the team has participated in several

competitions, both national and international. Each
year, new challenges are presented, and new objectives
are defined, always with a better team performance

2http://www.ieeta.pt/atri/cambada
3http://www.ieeta.pt/atri
4http://www.ieeta.pt

70 Electrónica e Telecomunicações, VOL. 5, N◦ 1, JUNHO 2009

in sight. After achieving the first place in the national
competition Robótica 2007 and Robótica 2008, the 5th
place in the world championship RoboCup 2007, this
year the team achieved the first place in the world
championship RoboCup 2008.
This paper presents the base station developed for

the robotic soccer team CAMBADA. Being this ap-
plication of extreme importance for the team, the re-
quirements and specifications of the project had to be
carefully analyzed. These issues are presented in Sec-
tion II. Section III presents the software architecture
of the base station. Section IV describes the implemen-
tation details, in particular the classes developed and
the information update mechanism. Finally, Section V
draws some conclusions.

II. Requirements and Specifications

The base station is the software application respon-
sible to provide automatic processing of soccer game
refereeing events (coming from the referee box) and to
allow high level monitoring and control of the robots
internal states. This application must be able to show
all relevant information of the robots, namely position
in the field, velocity, battery charge, among other in-
formation, and send basic commands/information to
the robots, in particular the run and stop commands,
play mode, etc. Besides that, the base station has a
fundamental role in a game, while receiving the com-
mands from the referee box, translating them to in-
ternal game states and broadcasting the results to the
robots. During a game, no human interference is al-
lowed except for removing malfunctioning robots and
re-entering robots in the game.
The role of the base station during the game led to

the fulfillment of some requirements, being the most
important the following:

Reliability / Stability: during the game, the base sta-
tion is not accessible for human interaction of any
kind and thus, it has to be a very robust applica-
tion.

Usability: the information displayed in the base sta-
tion should be easy to interpret, allowing, for in-
stance, for a fast detection of a problem in a robot.
Moreover, it should be possible to choose different
levels of details in the displayed information.

Usability in the team development stage: the base
station has to be easy to use, allowing an intuitive
management of the robots.

Adaptability: a robotic soccer team is in a permanent
development stage, which may lead to significant
changes within a short period of time.

These requirements led to the following specifications:

Modular construction: a robot, for instance, should
be an instantiable entity in the application in or-
der, for instance, to allow the inclusion of more
robots in the team. This modular construction
leads to a progressive development, allowing the
test of each module separately, thus increasing the

reliability and stability of the whole application.
Multi-windows solution: the application should be a

multi-window environment, allowing the user to
choose between different levels of information. At
least, three different levels of information should
be provided: a work level that presents the con-
trols of the robots and basic status information;
a visual level that presents visual information of
the position of the robots and, finally a detailed
level that shows all the information related to the
robots.

Robust communication skills: the correct operation
of the team during the game is fully dependent on
the communication between the robots, the base
station and the referee box. Hence, the base sta-
tion should provide a robust communication layer.

Automatic processing of the game states: the base
station should process the commands received
from the referee box allowing the robots to change
their internal game states accordingly. One spe-
cific action should be the changing of the field side
at half time.

Adaptable windows geometry: the multi-windows
system should adapt to monitors with different
resolutions. According to the new (upcoming)
MSL rules, the teams base stations must use an
external monitor provided by the organizing com-
mittee.

In order to use the base station during the team devel-
opment phase, the following specifications should also
be met:

Local referee box: the base station should provide an
interface widget to emulate a real referee box in
order to simulate events of a real game.

Manual positioning of the robots in the field: it should
be possible to move the robots, through a mouse
driven operation, to a specific position on the field.

Manual role assignment: acting as a cooperative
team, each robot has a specific role which is, dur-
ing a real game, dynamically assigned. In the de-
velopment phase, it should be possible to statically
assign a role to a specific robot.

III. System Architecture

The central software component in the architecture
of the CAMBADA robots is the Real-Time Database
(RTDB) [10]. The RTDB is a distributed data struc-
ture by means of which all the team agents share
their world models. It is updated and replicated in
all robots, base station and coach (the coach is a soft-
ware application, that running in the same computer
of the base station, that can, in some specific situa-
tions, assign the robots roles). The RTDB contains all
information related to the robots and game, namely
positions in the field, roles, behaviors, game sates, etc.
All the interaction between base station and the

CAMBADA robots is performed through the RTDB.
Due to this fact, one of the central modules in the

Electrónica e Telecomunicações, VOL. 5, N◦ 1, JUNHO 2009 71

Fig. 1 - All the commands and information exchanged between
all the team agents is accomplished through the RTDB.

base station architecture is the one responsible for
handling the communication with RTDB, named as
UpdateWidget (Fig. 6). It creates an abstraction layer
to the RTDB interaction mechanism.
Another module in the system is the RobotWidget

(Fig. 2). This module is responsible to send commands
to the robots and shows robots information, such as
position in the field, battery charge, etc.

Fig. 2 - The RobotWidget module showing the information and
the commands available for one robot.

The FieldWidget module is responsible to create a
visual interface to the user (Fig. 3). This module draws
the field and the robots and can provide a simple way
to control the position of the robots using a mouse
driven interaction.
The RobotInfoWidget module shows all the informa-

tion related to the robots stored in RTDB (Fig. 4).
Another important module in the base station system

is the RefBoxWidget. This module provides a local
referee box for test purposes and also manages the in-
formation received from a real referee box during a
game. It provides an easy interface to configure the
connection to the external referee box and allows the
temporary suspension of the handling of the referee
box messages maintaining the connection.
The base station implements a three windows based

solution, allowing the user to choose the better set
of information/actions that he wants to see/perform.

Fig. 3 - The FieldWidget showing the position of two robots and
the position of the ball as estimated by each of them.

Fig. 4 - The information of one robot in the base station informa-
tion window. This window shows the information of all robots
of the team.

Fig. 5 - The RefBoxWidget module providing a local referee box
for test purposes.

When the application starts, it shows one window,
the MainWindow (Fig. 7). The user can, at any time,
open the other windows: the FieldWindow (Fig. 8) and
the InfoWindow (Fig. 4). These two windows can be

72 Electrónica e Telecomunicações, VOL. 5, N◦ 1, JUNHO 2009

opened and closed independently. This solution allows
the user to have more than one screen with different
windows on each one. If the MainWindow is closed, all
the other windows will also be closed too.

Fig. 6 - The most important base station modules.

IV. Implementation

The base station project was developed in C++ in a
Linux environment using the Qt4 libraries [11]. The
Qt4 libraries were developed in C++ and provide
graphical and communication functions. This section
describes the most important classes developed for the
base station application and the most relevant issues
in the development process.

A. Base station Classes

In the base station project, the most important classes
that have been implemented are the following:

UpdateWidget: responsible for the connection be-
tween the base station and the RTDB. In this
class, it is declared a local image of the RTDB that
is passed, through a reference based mechanism,
to the other classes in the project. This class is
responsible for the connection to the RTDB and
for the update of the information present in the
local data structure.

FieldWidget: implemented using the integrated class
“GLWidget”, offered by the Qt4 library, that
merges the Qt4 communication mechanisms and
the graphical engine OpenGL. This class is respon-
sible for drawing the field and the robots. This
class implements a mechanism that allows the user
to select a robot and pass a new point in the field
to where the robot should move, using a mouse
based mechanism.

RobotWidget: this class implements all the visual el-
ements, like buttons, combo boxes, etc. related
to the robot information and control. It is also
responsible to process the information/commands
related to the robots. This class is instantiated as
many times as the total number of robots existing
in the team.

RobotInfoWidget: this class is responsible for the vi-
sual elements that show all the information stored
in the RTDB. Like RobotWidget, this class is in-

stantiated as many times as the total number of
robots existing in the team.

RefBoxWidget: this class is responsible for the cre-
ation, handling and destruction of the connection
between the base station and the external referee
box during a game. This class is also responsi-
ble for processing the game information and to
perform the change of the team side at half time.
This class also implements a local referee box.

MainWindowWidget: this is the application main
class. It constructs the other classes, handles
the mechanism of communication between Up-
dateWidget and the other classes and implements
all the visual elements concerning team commands
(coordinating all the robots at same time). This
class manages the other windows.

FieldWindowWidget: this class implements the visual
elements of the FieldWindow.

InfoWindowWidget: this class implements the visual
elements of the InfoWindow.

B. UpdateWidget Mechanism

This mechanism allows sharing the same memory
space with all modules in the application. It was imple-
mented using the concept of parent and child, where
a parent shares, with its children, the pointer to the
memory space.
The UpdateWidget includes the method
DB Robot Info *get info pointer(void) that
returns the pointer to the structure where a local
image of RTDB is stored. In all modules that interact
with this information, there is a method named void
get info pointer(DB Robot Info*) which has to
be called to give access to the structure information.

Fig. 9 - The UpdateWidget references mechanism.

Figure 9 shows the process of passing the references
in all main widgets of the application.
The process begins in the MainWindow object. Af-

ter calling the constructor of the UpdateWidget,
the method get info pointer from UpdateWidget is
called. This function returns a pointer to the memory
space. After that, the MainWindow class passes this in-
formation to all its internal modules and other classes.
All the classes pass the pointer to their children.
The implementation of this mechanism rises two main

questions:

Electrónica e Telecomunicações, VOL. 5, N◦ 1, JUNHO 2009 73

Fig. 7 - The MainWindow of the base station application.

Fig. 8 - The FieldWindow of the base station application.

74 Electrónica e Telecomunicações, VOL. 5, N◦ 1, JUNHO 2009

Why is this mechanism not included in the construc-
tor of each class?
To include some classes in the design procedure it
is mandatory that they have default constructors
with predefined input parameters.

Why doesn’t this mechanism has problems of mutual
exclusion?
All interaction with the memory space is per-
formed inside slot methods (Qt4 mechanism that
responds to a specific signal) which guarantees the
mutual exclusion (thread-safe) [12].

C. RefBoxWidget incoming messages handling mech-
anism

One important issue in processing the messages com-
ing from the referee box is to guarantee the consistency
of the information in all robots. It is very important
that all robots share the same game states (play mode).
This is guaranteed by the broadcast mechanism of the
RTBD [13], [14].
The internal game states implemented in the CAM-

BADA are: Start, Stop, DropBall, OurKickOff,
TheirKickOff, OurPenalty, TheirPenalty,
OurFreeKick, TheirFreeKick, OurGoalKick,
TheirGoalKick, OurThrowIn, TheirThrowIn,
OurCornerKick and TheirCornerKick.
The base station has the notion of the team color and

compares all orders to decide which is the next internal
game state. An order like Magenta Free Kick could
be an OurFreeKick if the team has the Magenta color.
However, if the team color is cyan, the internal game
state will be TheirFreeKick.
The referee orders could be classified into two classes:
Game State orders and Game Status orders. The
Game State orders are concerned with the state of
the game. There are orders like Start, Stop,
MagentaGoalKick, etc. The Game State orders have
some special requirements to be processed. The or-
der of reception is important and, after each order, the
robots have to be informed of each game state. This
is more relevant in case of more than one command
is received in the same referee box message. However,
a status message doesn’t have these requirements. If
more than one command is sent in the same message,
the order of reception will be irrelevant. The algorithm
implemented in RefBoxWidget reflects that.

V. Conclusions

The application described in this paper was used in
the Portuguese Robotics Open “Robótica 2008” where
CAMBADA team was, for the second time, national
champion. Moreover, it was also used in world champi-
onship “RoboCup 2008” where CAMBADA team has
won, for the first time, the world champion title. Dur-
ing these events, the application showed a high level of
stability and reliability that was identified as a special
requirement in the beginning of this project. Besides
that, all other requirements were fulfilled, concluding
that the base station was an important agent in the

success of CAMBADA, contributing to the excellent
results obtained by the team in the last year.

Acknowledgment

This work was supported in part by the FCT project
PTDC/EIA/70695/2006.

References

[1] MSL Technical Committee 1997-2008, “Middle Size Robot
League Rules and Regulations for 2008”, 2007.

[2] J. L. Azevedo, B. Cunha, and L. Almeida, “Hierarchical dis-
tributed architectures for autonomous mobile robots: a case
study”, in Proc. of the 12th IEEE Conference on Emerging
Technologies and Factory Automation, ETFA2007, Greece,
2007, pp. 973–980.

[3] A. J. R. Neves, G. Corrente, and A. J. Pinho, “An omnidi-
rectional vision system for soccer robots”, in Proc. of the
EPIA 2007. 2007, vol. 4874 of Lecture Notes in Artificial
Inteligence, pp. 499–507, Springer.

[4] A. J. R. Neves, D. A. Martins, and A. J. Pinho, “A hybrid
vision system for soccer robots using radial search lines”, in
Proc. of the 8th Conference on Autonomous Robot Systems
and Competitions, Portuguese Robotics Open - ROBOT-
ICA’2008, Aveiro, Portugal, april 2008, pp. 51–55.

[5] D. A. Martins, A. J. R. Neves, and A. J. Pinho, “Real-time
generic ball recognition in RoboCup domain”, in Proc. of
the 11th edition of the Ibero-American Conference on Arti-
ficial Intelligence, IBERAMIA 2008, IROBOT Workshop,
Lisbon, Portugal, october 2008, pp. 37–48.

[6] P. M. R. Caleiro, A. J. R. Neves, and A. J. Pinho, “Color-
spaces and color segmentation for real-time object recogni-
tion in robotic applications”, Revista do DETUA, vol. 4,
no. 8, pp. 940–945, June 2007.

[7] B. Cunha, J. L. Azevedo, N. Lau, and L. Almeida, “Ob-
taining the inverse distance map from a non-svp hyper-
bolic catadioptric robotic vision system”, in Proc. of the
RoboCup 2007, Atlanta, USA, 2007.

[8] J. Silva, N. Lau, J. Rodrigues, and J. A. Azevedo,
“Ball sensor fusion and ball interception behaviours for a
robotic soccer team”, in Proc. of the 11th edition of the
Ibero-American Conference on Artificial Intelligence, IB-
ERAMIA 2008, IROBOT Workshop, Lisbon, Portugal, oc-
tober 2008, pp. 25–36.

[9] L. S. Lopes N. Lau and G. A. Corrente, “CAMBADA: In-
formation sharing and team coordination”, in Proc. of the
8th Conference on Autonomous Robot Systems and Com-
petitions, Portuguese Robotics Open - ROBOTICA’2008,
Aveiro, Portugal, april 2008, pp. 27–32.

[10] L. Almeida, F. Santos, T. Facchinetti, P. Pedreira,
V. Silva, and L. S. Lopes, “Coordinating distributed au-
tonomous agents with a real-time database: The CAM-
BADA project”, in Proc. of the 19th International Sympo-
sium on Computer and Information Sciences, ISCIS 2004.
2004, vol. 3280 of Lecture Notes in Computer Science, pp.
878–886, Springer.

[11] Trolltech Co, “Qt cross-platform application framework”.
URL: http://www.trolltech.com

[12] Trolltech Co, “Signals and slots across threads”.
URL: http://doc.trolltech.com/4.0/threads.html#signals-
and-slots-across-threads

[13] F. Santos, L. Almeida, P. Pedreiras, L.S. Lopes, and
T. Facchinetti, “An Adaptive TDMA Protocol for Soft
Real-Time Wireless Communication among Mobile Au-
tonomous Agents”, in Proc. of the Int. Workshop on Ar-
chitecture for Cooperative Embedded Real-Time Systems,
WACERTS 2004, 2004, pp. 657–665.

[14] F. Santos, G. Corrente, L. Almeida, N. Lau, and L.S. Lopes,
“Selfconfiguration of an Adaptive TDMA wireless commu-
nication protocol for teams of mobile robots”, in Proc. of
the 13th Portuguese Conference on Artificial Intelligence,
EPIA 2007, 2007.

