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FPGA-based Ethernet Sniffer for Real-Time Networks
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Abstract – This paper presents an Ethernet sniffer

based on dedicated hardware, able to carry out the

timestamping of network events with a level of res-

olution and precision compatible with the specific

needs of real-time protocols. The sniffer is based

in FPGA technology, and autonomously stores in

local memory the received messages data and as-

sociated information (timestamps and size). This

data is then fed to the host computer, via an USB

connection, and stored in a file format compatible

with Wireshark. This allows using standard tools to

subsequently analyze the traffic. Furthermore, in

the scope of this work it was also developed custom

tools to automate the analysis of timing properties

of the traffic, including the generation of graphics

and statistical data, which are common operations

in the analysis of real-time protocols. The paper

includes experimental results of a prototype imple-

mentation showing that this tool permits meticu-

lous temporal measurements, with a resolution of

10ns and a maximum error of 100ns, which im-

prove the results obtained with standard software-

based applications by over one order of magnitude.

Resumo – Este artigo apresenta um sniffer Ether-

net, baseado em hardware dedicado, capaz de efec-

tuar a marcação temporal dos eventos de rede com

uma resolução e precisão compat́ıveis com as ne-

cessidades espećıficas dos protocolos de tempo-real.

O sniffer é baseado em tecnologia FPGA e arma-

zena autonomamente as mensagens que circulam

na rede, bem como informação complementar re-

levante (marca temporal e tamanho). Estes da-

dos são enviados para um computador externo, via

uma ligação USB, e armazenados num ficheiro com-

pat́ıvel com o Wireshark. Esta abordagem possibi-

lita o uso de ferramentas standard para analisar o

tráfego. Complementarmente foram também de-

senvolvidas ferramentas espećıficas para execução

automática de operações de análise temporal co-

muns em protocolos de tempo-real, nomeadamente

a geração de gráficos e a extracção de dados es-

tat́ısticos. O artigo inclui resultados experimen-

tais obtidos de uma implementação piloto, os quais

permitem concluir que a ferramenta apresenta um

elevado rigor, com uma resolução de 10ns e um

erro máximo de 100ns, correspondendo a um me-
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lhoramento superior a uma ordem de grandeza em

relação às ferramentas standard baseadas exclusi-

vamente em software.
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I. Introduction

Nowadays, communication networks are used in many
distributed applications that need to share informa-
tion between the different nodes that compose the sys-
tem. Ethernet has emerged as the de facto standard
in generic local area networks, being used in a wide
scope of applications, ranging from complex systems
as banks, where massive amounts of data flows are
supported, to the network used at home to access in-
ternet or share a printer. A common property shared
by these “classical” Ethernet applications is that they
are inherently soft-real time. In this context the net-
work is required to provide high throughput and good
average response times, but occasional abnormal traf-
fic delays, due to e.g. overloads, have no catastrophic
consequences.
In the last years Ethernet has established itself also

as one of the most important networking technologies
even for systems with extra functional requirements
on timing, raising the so-called Real-Time Ethernet

(RTE) protocols. Switched Ethernet architectures, in
particular, have been highly regarded for this class
of applications since they alleviate the impact of the
non-determinism inherent to Ethernet’s CSMA/CD
medium access control (MAC). Nowadays RTE pro-
tocols are found in industrial environments, military
systems, avionics, body networks in automotive ap-
plications, etc. Many of these application classes have
strict timeliness requirements and thus, computational
results must be logically correct but also be obtained
during restrict and predictable time intervals. For in-
stance, in the closed-loop control of the motors of mo-
bile robots the commands have to be sent at precise
time intervals or the performance degrades, potentially
causing catastrophic consequences in material terms or
even jeopardizing human lives, depending on the par-
ticular environment. Clearly, for this kind of appli-
cations the timeliness aspects of the protocols are of
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paramount application, and thus the network perfor-
mance has to be analyzed also in this dimension.

The validation of the proper operation of a network
is typically done by means of the so-called traffic ana-
lyzer tools, also known as sniffers. The purpose of using
these tools is to capture messages and the time instants
in which they flow on the network. There are many ap-
plications available for this purpose, both commercial
and open source. One of the best known applications
is Wireshark [?] (formerly EtheReal). The problem of
these solutions is that they are mainly software-based,
relying on standard PC-class hardware to observe the
traffic. Despite being simple and inexpensive, in this
approach the timestamps are taken at the application
layer, and thus suffer from a set of cumulative interfer-
ence sources that inevitably compromise the accuracy
of the measurements, resulting in temporal resolutions
of the order of 1µs and an uncertainty of the order
of milliseconds. Many real-time applications have cy-
cle times of the order of milliseconds, thus these tools
become clearly unsuitable for verifying the RTE time-
liness aspects. Some of the commercial tools available
for Ethernet networks are based on specialized hard-
ware. In this case the timestamps are generated by cus-
tomized network interface cards, exhibit improvements
of one order of magnitude compared with software-only
approaches. The main problem with these approaches
is that they are proprietary, closed and extremely ex-
pensive.

The usage of programmable logic devices is a low cost
and flexible solution to produce dedicated circuits to
perform specific tasks. The existence of intellectual
property (IP) cores allows increasing the productivity
by reducing the prototype time and the costs associ-
ated to the manufacturing of Application Specific Inte-
grated Circuit (ASICs). This observation fostered the
development of a low-cost, high-resolution, open and
flexible Ethernet analyzer. The analyzer framework is
based on standard FPGA technology and uses open
file formats, facilitating the use of commonly available
tools (e.g WireShark). A set of analysis tools, specific
to RTE protocols and not commonly available in stan-
dard analyzers, has also been developed in the scope
of this work.

The remaining of this paper is organized as follows.
Section II describes the motivation of the work and
introduces some related applications and studies. Sec-
tion III describes architecture and some relevant de-
tails of the sniffer internal structure. Section IV shows
the results of implementation on FPGA. Section V de-
scribes the tests done and the results obtained. Finally,
section VI presents the conclusions and some points to
be improved and considered in the future work.

II. Related Work

Many protocol analyzer tools are available in the mar-
ket. Some of them are pure software approaches, re-
lying solely on the hardware of the host computers
(typically PC-based), to carry out the packet capture,

timestamping and analysis. These tools are normally
extremely complete and powerful, being able to handle
most of the available communication protocols. One
of the best known applications belonging to this class
is Wireshark [?] (formerly EtheReal). A common fea-
ture to this class of applications is that the timestamps
are generated at the application-level, and thus the ac-
curacy with which the events are recorded is affected
by diverse cumulative sources of interference, such as
the PCI bus, DMA, higher-priority interrupts, non-
preemptive OS sections, scheduling jitter, etc. The net
result of all these sources of indeterminism is that the
time elapsed between the actual reception of a mes-
sage and its timestamping is essentially unpredictable
and highly variable, depending, among other things,
from the processor utilization, device-drivers installed,
sources of interrupts, locks by the access to shared re-
sources and the hardware characteristics (direct mem-
ory access, cache memory and pipelined architectures).
The accuracy with which the timestamp of the network
events is generated is gross, typically with a temporal
resolution of 1µs and an uncertainty of the order of
milliseconds. Since many real-time applications have
cycle times of the order of milliseconds this class of
tools, despite inexpensive and powerful, become clearly
unsuitable for use in RTE protocols analysis.

Many academic and commercially available tools
improve the degree of accuracy provided by pure
software-based by over one order of magnitude, thus
reaching a level suitable to test the compliance of
RTE protocols. These approaches are based on spe-
cialized hardware support. In [?] a multi-probe mea-
surement instrument for real-time Ethernet networks is
presented. It is composed by many probes that can be
placed among the network and each one is responsible
for monitoring a single full-duplex link. A secondary
or auxiliary measurement network has been created to
convey results of logging and timestamping. This mea-
surement network is also used for distributed clock syn-
chronization in order to allow the comparison of times-
tamps from different probes. Each probe associates a
timestamp to every frame that transit in the moni-
tored link and then, the original frame is encapsulated
in a new longer frame containing the timestamp and
additional information. The measurement network is a
Gigabit Ethernet network and the captured packets are
encapsulated in jumbo frames. These frames are then
sent to a monitor station that de-encapsulate incoming
packets retrieving original frames and timestamps and
then the information is displayed using Wireshark.

Other tools for Ethernet networks have capabilities
to generate traffic and, comparing it with captured
traffic, they can measure latency or frame losses [?].
AE5501 [?] is commercialized by Yokogawa, costs
about 3000eand it has a resolution of 1µs (with a
maximum error of 3µs) for 10Mbps connections and
a resolution of 100ns (with a maximum error of 300ns)
for 100Mbps and 1Gbps connections. These tools are
usually remotely controlled for configuration and for
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a later analysis of the results and it is possible to
connect various equipments among the network. Ad-
vanced tools can have higher processing and storage
capacities (15T Bytes), with prices that can go up to
40000e. Besides being extremely costly, these tools are
also closed and inflexible. They are based on custom
hardware and use proprietary file formats. Thus, using
standard tools or developing a new one for analyzing
the traffic network is hardly accomplishable and, when
possible, inefficient due to the poor integration.

The above discussion permits concluding that the pro-
tocol analyzers available are either unsuitable due to
gross temporal accuracy, or expensive, closed and in-
flexible. Thus, there is room for the development of a
low-cost, high-resolution, open, flexible and extensible
Ethernet analyzer, which is the objective of this work.

III. Protocol Analyzer Architecture

The protocol analyzer acquisition unit was designed
with the intention of making accurate time measure-
ments and minimize as much as possible the pertur-
bation in the network. The corresponding block dia-
gram is represented in figure 1. The acquisition unit
is inserted in the link under analysis using an Ether-

net Test Access Point (TAP) that duplicates the data
flows. There are many commercial TAPs [?], many
of them with the capability of regenerate the signals.
However, in our case, due to the objective of building
a low cost tool, it was used a home-built passive TAP,
using only a resistor-based adaptation circuit. Besides
being considerably cheaper, this approach does not in-
troduce additional latencies, contrarily to the regen-
erative TAPs. On the other hand the passive TAP
introduces a perturbation at the physical level that in
practical terms will reduce the maximum length of the
link.

The interface between the programmable logic device
responsible for processing the captured data and the
transmission medium is done via 2 Ethernet PHYs,
i.e. the Ethernet physical layer implementation chips,
one for each traffic direction, allowing capturing simul-
taneously the traffic that flows in both directions of a
full-duplex connection. The FPGA receives data from
PHYs, registers the instant in which each message is
received (timestamping) and then forwards them with
all associated information to a personal computer, via
an USB connection. The captured data is stored in the
personal computer and can be analyzed later. Finally,
the board also includes two push-buttons that allow
starting and finishing the capture.

Internal Structure

The FPGA implements two distinct tasks, one re-
lated with reception and processing of the data cap-
tured from Ethernet network and the second one as-
sociated with the need to feed the data to the host
computer. The tool is required to permit the anal-
ysis of full-duplex connections, thus two independent
MAC IP cores have been used, allowing the reception
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Fig. 1 - Architecture of the sniffer acquisition unit.

of two independent messages concurrently. Once re-
ceived, the raw packet contents is associated with a
control header that conveys additional control infor-
mation associated with the packet, namely the instant
in which the message has been received, its length and
the number of message bytes stored. The format used
to store the file internally in the FPGA is the same
used on the host computer side, in order to minimize
the processing time.

The memory used for message buffering has been di-
vided in two independent FIFO (First In, First Out)
memories. The Data FIFO is responsible for storing
the raw content of each message, while the Control

FIFO is responsible for storing the associated control
information. This memory isolation facilitates the con-
current access to both memories. Finally, the messages
are sent to the host computer via an USB connection.
Since the protocol conversions are already done the
process resumes itself to get one entry from the Con-

trol FIFO, compose it with the corresponding entry of
the Data FIFO and send the whole info via the USB
channel.

The medium access control layer is based in the Tri-

Mode Ethernet Media Access Controller (TEMAC) [?].
It is a parameterizable core built by Xilinx and basi-
cally provides to the user three types of signals: clock,
data and validation or control. Data is released in a 8
bit bus width and can have a latency variation of three
clock cycles. Considering Fast Ethernet it corresponds
to a maximum delay variation or jitter of 120ns.
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Fig. 2 - Internal structure of the sniffer hardware.

When the reception of a message starts (first eight
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bytes) and the corresponding data valid signal is de-
tected, the message is timestamped and this value is
stored in the control memory. Simultaneously, data
starts being stored into data memory. When the re-
ception ends, the message length and the number of
bytes captured are stored in control memory and thus
the message becomes ready to be uploaded via the USB
connection. This process is illustrated in figure 2.

It is possible to bound the maximum number of data
bytes stored for each message. This option is useful
since in many cases only the initial few bytes of the
packets are relevant and thus it is possible to minimize
the buffer sizes, upload time and log file size. Besides
speeding up the operation, in heavily loaded scenar-
ios this feature turns out to be particularly relevant
since the throughput of the USB link is lower than
the aggregated bandwidth of the full-duplex Ethernet

link, and thus recording all the data leads inevitably to
memory overflows. However, if the amount of stored
data is reduced to appropriate levels, compatible with
the USB channel bandwidth, memory overflows can be
prevented. In many cases the relevant data is the mes-
sage reception instant and a few control bytes stored
at the head of the Ethernet packets, and thus stripping
of the data packets has no relevant impact on the tool
performance and accuracy of the information provided.

Interface with the Host PC

The interface between the host PC and the FPGA
is based on a EZ-USB FX2 USB module from Cy-

press (CY7C68013-100AC ), which supports USB 2.0
connections in high-speed mode (480Mbps). It incor-
porates an 8051 microcontroller, although only for con-
figuration and management purposes, having no inter-
ference in the actual transmission. From the FPGA
point of view the device is seen as a FIFO memory
which the firmware accesses for configuration and man-
agement. The device has been configured to use bulk
mode transmission, providing high bandwidth and er-
ror correction.

On the host computer side, the software has been de-
veloped for the Linux operating system. The connec-
tion is established and controlled using the functions
available in the libusb library. The data captured by
the FPGA is stored in a format compatible with the
libpcap file format [?] used by Wireshark. Since the
data is transmitted via USB in the same format as it is
stored in the FPGA memory, the processing required
on the PC side consists only in writing the received
data into a file. Then, the captured data file can be
opened using standard tools, in particular Wireshark

(figure 3) and taking advantage of its exporting func-
tion, new files can be created in CSV (Coma Sepa-
rated Values) or other arbitrary text format. These
files can be opened with data processing applications
(e.g. Matlab, Octave or Scilab). In the scope of this
work a few Octave scripts have been developed to au-
tomate the extraction of commonly needed statistical
data and graphs. Some examples can be seen in tables

I and II or in figures 5, 6 and 7.

IV. Modeling and Synthesis

The sniffer hardware components were modeled us-
ing the VHDL hardware description language. The
model was synthesized and implemented in a Xilinx
XC3S1500 Spartan-3 low cost FPGA [?]. The synthe-
sis final report is shown on figure 4.

Final Synthesis Report
=================================================
Selected Device :xc3s1500-4fg676

Device utilization summary:
Nr. of Slices: 2789 out of 13312 (20%)

Nr. of Slice Flip-Flops: 3587 out of 26624 (13%)
Nr. of 4 input LUTs: 4174 out of 26624 (15%)
Nr. of Bonded IOBs: 54 out of 487 (11%)

Nr. of Global CLKs: 7 out of 8 (87%)
Nr. of Block RAMs: 32 out of 32 (100%)

Timing Summary:
Speed Grade: -4

Min. period: 17.521ns (Max. Frequency: 57.075MHz)
Min. input arrival time before clock: 9.337ns
Max. output required time after clock: 9.922ns

Maximum combinational path delay: 12.338ns

Fig. 4 - Sniffer hardware synthesis report.

The implementation can operate up to 57Mhz and oc-
cupies 2789 FPGA logic cells, corresponding approxi-
mately to 20% of the available slices. Please note that
a 100 Mbit/sec Ethernet network requires the MAC
circuits operating at 25 MHz. To implement the snif-
fer in ASIC technology about 2,120,985 logic gates are
needed. It should also be noted that all available block
RAMs (576 Kbits) are in use for implementing the
Control and Data FIFOs.

V. Test and Performance Analysis

In order to evaluate the performance of the developed
tool, a set of tests have been carried out. The tests
intended mainly to examine the temporal precision of
the tool, the interference of the tool in the network and
the capacity of the USB connection. In this context,
a comparison was done between the results obtained
using a software-only based sniffer application (Wire-

shark) and sniffer using the hardware built.

Interference in the Network

To analyze the interference of the tool in the network,
two computers were connected. One was responsible
for generating traffic, using the packETH traffic gen-
erator, and the other PC captured the traffic using
Wireshark. For each test 500000 packets, with differ-
ent periods and message lengths, were generated. The
test has been carried out both with a direct connec-
tion between the PCs and with the TAP/FPGA tool.
In the second scenario the traffic was captured both
with the FPGA and by Wireshark, simultaneously.

The obtained results show that in the software based
tool some packets are dropped without the user being
alerted about it. On the other hand, the number of
packets captured by the hardware tool is exactly co-
incident with the number of packets generated at the
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Fig. 3 - Appearance of a capture analyzed with Wireshark.

source node. Apart from that, it is also possible to ob-
serve that the percentage of dropped packets remains
the same and it is independent of the presence of the
hardware based tool. For this reason it is possible to
infer that attenuation caused by TAP has no relevant
impact in logical behavior of connections used in lab-
oratory. The connections used have about one dozen
of meters, however, the usage of longer links or worse
quality cables can in some situations be problematic.

A closer look also allows to observe that packet losses
using software applications increases with the increase
of the length of messages and with the decrease of the
time between messages, thus showing a dependency
with the link bandwidth.

Capacity of the USB Connection

Another parameter that is important to evaluate is the
capacity of USB connection. Theoretically, the USB
protocol has enough bandwidth to support the Fast

Ethernet data, even for full-duplex scenarios. Never-
theless, in practice some problems were experienced.
The problems have been track down to the writing of
the received data into the hard disk of the host PC.
This operation is slow and inhibits the reception of
data sent by FPGA. Due to this blocking time, the
FPGA memory can become full, thus breaking the
capture process. To ensure that this is the cause of
the problem, a situation in which the data was not
stored but only analyzed to detect any incoherency,
was tested. In this case the capture was never inter-

rupted.

Temporal Performance

To evaluate the temporal performance of the devel-
oped tool it is important to know the exact moment
in which each packet is captured. For this reason, a
FPGA was used to generate traffic. It is important to
note that, according to the TEMAC specifications, it
can have a latency variation up to 120ns (due to the
synchronization of distinct clock domains). However,
this value is much lower than the associated jitter of
any personal computer. Once again Wireshark and the
developed tool were used to capture packets and many
tests were done using different period values and mes-
sages of different lengths. Then, the captured data was
processed using Octave based scripts and some tables
and graphs were generated.

Tables I and II present the results of a software and
hardware based capture, respectively. The results of
three tests were represented graphically, with the x-
axis representing the interval of time between two con-
secutive messages and the y-axis representing the num-
ber of occurrences of each interval. The FPGA-based
tool produced similar results in all situations. On the
other hand, the usage of software-only tools originated
two distinct situations according to the time interval
between two consecutive messages. When the inter-
arrival time between two consecutive packets falls be-
low 200µs messages start to be dropped. Furthermore,
many messages accumulated in the NIC (Network In-
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Fig. 5 - Results of hardware versus software timestamping.

Period Length Max Min Avg Std Absolute
(µs) (Bytes) (µs) (µs) (µs) (µs) Jitter (µs)

10 46 48872 2 15.39 335.62 48870
10 80 67542 2 13.78 373.52 67540
20 46 24786 2 21.76 158.31 24784
20 200 54927 2 22.78 276.42 54925
50 46 39159 2 50.90 188.11 39157
50 200 45161 2 56.32 283.38 45159
50 550 25654 2 56.43 249.81 25652
100 46 71817 2 101.46 334.54 71815
100 550 40805 2 105.51 280.21 40803
100 1150 117525 3 112.11 767.69 117522
200 46 280 121 200.03 2.37 159
200 1500 57007 80 202.78 291.44 56927
500 46 589 415 500.04 2.98 174
500 1500 53502 362 501.10 237.11 53140
1000 46 2969 6 1000.06 15.12 2963
1000 1500 50003 722 1001.82 272.29 49281

TABLE I

Performance of the software-based tools.

terface Card) internal memory, being transferred and
processed by the device-driver in block, together. In
this case, the difference between timestamps of mes-
sages is related with the processing time of each mes-
sage and not with the receiving instant, as desired. In
spite of being expected that the average time would
be the same as the period of messages, in some situa-
tions messages are drooped and this value is obviously
higher. This situation is represented in figures 5(a) and
5(b). To compare the results obtained with the results
expected, in figures 5(c) and 5(d) the same situation is
shown but using the FPGA-based tool.

Another situation, with a period higher than 200µs,
in which the software based tools performs better is
represented in figure 6. It should be remarked that
the length of messages has impact in the performance
of software tools, with the jitter value increasing when
the frame size increases. In figure 6, messages with
same period but different lengths were captured. Nev-
ertheless, the performance of hardware based tools is
still much better.

Finally, the FPGA-based sniffer was also successfully
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Fig. 6 - Impact of the length of messages in the performance of
the capture tools.

Period Length Max Min Avg Std Absolute
(µs) (Bytes) (µs) (µs) (µs) (µs) Jitter (µs)

10 46 10.09 9.99 10.02 0.035 0.10
10 80 10.09 9.99 10.02 0.035 0.10
20 46 20.09 20.00 20.02 0.034 0.09
20 200 20.09 19.99 20.02 0.034 0.10
50 46 50.09 50.00 50.02 0.034 0.09
50 200 50.09 50.00 50.02 0.034 0.09
50 550 50.09 50.00 50.02 0.034 0.09
100 46 100.09 100.00 100.02 0.033 0.09
100 550 100.09 100.00 100.02 0.033 0.09
100 1150 100.09 100.00 100.02 0.033 0.09
200 46 200.09 200.00 200.02 0.031 0.09
200 1500 200.09 200.00 200.02 0.031 0.09
500 46 500.09 500.00 500.02 0.022 0.09
500 1500 500.09 500.00 500.02 0.022 0.09
1000 46 1000.02 999.93 1000.01 0.022 0.09
1000 1500 1000.02 999.93 1000.01 0.022 0.09

TABLE II

Performance of the developed sniffer.

tested in a specific situation involving a real-time com-
munication protocol, incidentally the FTT-SE proto-
col [?] developed at the IEETA/LSE laboratory, where
this work was hosted.

Periodic messages were captured and analyzed (figure
7) and it was possible to observe that jitter value ob-
tained by using software-based tools can be up to 20
times the value obtained by using dedicated hardware.
It is also possible to observe that software based tools
have a maximum resolution of 1µs. More than that, it
is important to refer that the developed tool can cap-
ture messages in full-duplex connections, being able
to correlate the master and slave messages, something
than is out of reach of the software-based tools, which
can only analyze half-duplex connections.

The results obtained (resolution of 10ns with a max-
imum error of 100ns) are very similar to the specifica-
tion of some comercial tools. In the same conditions,
AE5501 can achieve a latency resolution of 100ns with
a maximum error of 300ns. Thus, most of the times
these equipments are characterized in a pessimistic way
and results correspond to the worst case situation.
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Fig. 7 - Jitter of periodic messages using FTT-SE protocol.

VI. Conclusion and Future Work

This paper has presented an hardware-assisted Eth-

ernet protocol analyzer tool, with capacity to analyze
real-time ethernet networks. It has been implemented
using FPGA technology and the interface with the net-
work is done using a passive Ethernet TAP. The FPGA
itself has capacity to capture traffic in full-duplex con-
nections. Timestamping and control information is
associated to captured packets at the hardware level,
thus permitting an high degree of resolution and accu-
racy. The captured data is afterwards sent to an host
PC for further analysis, via an USB link. Data is saved
in a open file format, that can be read by standard
applications. This approach permits taking full advan-
tage of all the functionalities supported by applications
such as Wireshark. Some mechanisms to export data
into other formats were also created. Captured traf-
fic can also be analyzed using calculation tools such as
Matlab/Octave/Scilab or spreadsheets. A set of tools
for automating the extraction of common statistical
data and graphs have also been developed.
Concerning the accuracy of the tool, it is possible to

infer that the timestamps have a precision of 100ns

and a resolution of 10ns, independent of the traffic
load, a value similar to the ones specified by commer-
cially available hardware-based tools, which have costs
orders of magnitude higher. On the contrary, software-
based tools had a performance extremely dependent of
the traffic load, with precisions that can be worse by
several orders of magnitude, turning out these tools
completely useless for carrying out measurements re-
lated with real-time Ethernet protocols.
Despite the positive results achieved, there are some

points that can be improved and will be addressed
in the future. The issue that can be pointed out to
the current implementation is related with USB trans-
mission that can limit the amount of captured data
and the duration of capture. One possibility to allevi-
ate the blocking time imposed by the host computer
during the storage of the received data is increasing

the memory capacity. It can be done using a FPGA
with more block RAMs available, such as the Virtex-4
(XC4VFX140) that has about 20 times more capac-
ity. Alternatively, an external memory can be used,
e.g. the usage of a 64Mbytes DDR memory allows
an increase of the capacity up to 512x. Nevertheless
these solutions are only valid if the average Ethernet

transmission rate is lower than the USB transmission
rate. Otherwise the USB connection has to be re-
placed. Some alternatives that can be considered are
Gigabit Ethernet (1000Mbps), FireWire (800Mbps) or
a SATA connection (Serial Advanced Technology At-
tachment) (2400Mbps), being the later a potential so-
lution for connecting to a host PC a Gigabit Ethernet

sniffer with full-duplex traffic capture capabilities.
Another point that can be improved is the user inter-

face, which should be more friendly. In this context it
would be interesting the development of a plug-in to
Wireshark to support and control all the functionalities
of the developed tool. Namely it would be interesting
to permit controlling the beginning of a capture, show
the number of packets captured, the duration and then
terminate the capture. It should also have a field to
configure the maximum number of bytes captured from
each message, avoiding having to synthesize the tool
when this value is changed. In addition it would also
be interesting to add new dissectors to Wireshark for
supporting RTE protocols, in particular the FTT-SE
protocol. It would also be desirable to have the possi-
bility of generating graphs and tables inside the Wire-

shark, without having to explicitly export the data to
other tools such as Octave.
Due to the constant evolution of the real-time proto-

cols and the hardware capacities it should be consid-
ered the possibility of the future improvement of the
timestamping precision. Currently, the main limita-
tion is imposed by the latency variation or jitter intro-
duced by the Ethernet MAC core used. A possible so-
lution consists in the implementation of a timestamp-
ing unit working in parallel with the TEMAC. In this
solution two parallel paths will process the received
Ethernet frame: one will be responsible for data re-
ception and validation and the other for timestamping
based on the signals directly provided by the Ether-

net PHY. Consequently, the timestamping will be per-
formed closer to the physical layer, before the frame
passes through the TEMAC, decreasing the delay be-
tween the actual frame reception at the network inter-
face and its timestamping.
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tation and Performance of Time Stamping Techniques”,

Conference on IEEE 1588, Sept. 2004.

[14] P. Arlos and M. Fiedler, “A Comparation of Mea-

surement Accuracy for DAG, Tcpdump and Windump”,

2005, Blekinge Institute of Technology (Sweden) [online]

www.its.bth.se/staff/pca.

[15] NetScout, “Sniffer products”, 2008, [Online] URL:

http://www.netscout.com/products/.


