
ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, N◦ 1, JUNHO 2009 55

Parameterizable CAN Switch Implementation Using FPGA

João Faria, Samuel Madail, Arnaldo Oliveira

Abstract – The Controller Area Network is a well known
fieldbus commonly used in many distributed control systems.
However, the original bus topology of CAN limits its usage
in safety-critical and fault tolerant applications. In ord er to
improve its performance and allow its deployment in safety-
critical applications, several CAN hubs and switches have
been created, permitting the adoption of star-based topolo-
gies. This paper presents the architecture, FPGA implementa-
tion and test of a parameterizable CAN 2.0B switch based on
a synthesizable CAN intellectual property core developed at
DETI-UA. The switch consists of multiple instantiated CAN
controllers, the pool of message buffers and the logic required
to forward messages between ports. All switch core compo-
nents are implemented in FPGA logic cells, except the CAN
physical layer transceivers.

Resumo – O barramento CAN (Controller Area Network) é
amplamente utilizado em sistemas envolvendo controlo dis-
tribuı́do. Apresenta no entanto algumas reservas inerentes
à sua topologia e que limitam a sua utilizaç̃ao em sistemas
de segurança crı́ticos e tolerantes a falhas. Para melhorar o
desempenho t̂em sido desenvolvidos v́arios hubs e switches,
proporcionando a adopç̃ao de topologias baseadas em estrela.
Este artigo apresenta a arquitectura, implementaç̃ao e teste de
um switch CAN 2.0B parametrizável e baseado num núcleo
de propriedade intelectual sintetiźavel de um controlador de-
senvolvido no DETI-UA. O switch consiste na instanciaç̃ao de
múltiplos controladores CAN, blocos de meḿoria para arma-
zenamento das mensagens e toda a lógica para reencaminha-
mento das mesmas entre as portas do switch. Todos os com-
ponentes foram implementados em FPGA excepto os transcei-
vers CAN responśaveis pela camada fı́sica.

Keywords – Controller Area Network (CAN), Field buses,
Fault tolerant communication system, Switch, Real-Time,
FPGA.

Palavras chave – Controller Area Network (CAN), Barramen-
tos de campo, Sistemas de comunicação tolerantes a falhas,
Switch, Tempo-Real, FPGA.

I. I NTRODUCTION

The Control Area Network (CAN) protocol [1] is a field
bus widely used due to its high reliability, acceptable real-
time performance and low cost. These characteristics make
CAN a good choice for many distributed embedded con-
trol systems, such as factory automation or in-vehicle com-
munication. CAN is based on a bus topology and em-
ploys a Carrier Sensing Multiple Access/Collision Avoid-
ance (CSMA/CA) medium access control mechanism con-
sisting of a dominant/recessive arbitration bit (see figure1).

Station A

Station B

Station C

BUS

Fig. 1 - CAN recessive/dominant arbitration bit mechanism.

Fig. 2 - CAN frame structure.

During arbitration, each transmitter node or station com-
pares the bit it is trying to transmit with the bit present in
the bus. If it senses a dominant bit while transmitting a
recessive bit, it means that another transmitter is sending
a higher priority message. The node that loss arbitration
stops the transmission and delays the sending of its mes-
sage until the next arbitration round, which guarantees that
no information is lost.
In a CAN-based distributed system the information is ex-

changed in fixed format messages of limited length (see fig-
ure 2). Each message has an identifier which defines a static
message priority used during bus arbitration. The iden-
tifier is also used to inform the remaining network nodes
about message’s content. CAN is based on the consumer-
producer paradigm, which means that the message identi-
fier carries information about its contents, not the identifi-
cation or address of the source or destination nodes. There-
fore, all nodes in a CAN network decide by themselves
about the reception (or discard) of a message. It means
that any group of nodes can receive and simultaneously act
upon the same message. Although each message identifier
can only be produced by one node in the network.
In a bus-based communication system like CAN, the net-

work nodes or stations have direct electrical connections to
the shared medium, which is the main weakness and im-
pairment form the dependability point of view. A failure in
any node of the network can prevent correct communication
between any other nodes. In [2] some possible malfunc-
tions of a CAN-based communication system are summa-
rized (e.g. a failure in the medium access control of a node
can produce dominant bits, which block the communication
channel and none of the nodes can communicate). Because
a unique bus is shared by all communication paths between
every subset of nodes, a failure in just one point causes a
breach of many communication paths. Another failure can
occur when a partition takes place in the local connection
of a node. In this case, the node gets isolated and there is no



56 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, N◦ 1, JUNHO 2009

influence in the communication between the others. Due to
the several specific dependability problems presented and
caused by the bus topology, a topology, called CANCen-
trate, based on a active hub has been proposed [3]. It has
mechanisms that reduce the number of severe points of fail-
ure to a unique single point of failure, namely the hub.
However, with a switch there are many other possibilities,
such as parallel communication paths and interconnection
of CAN networks operating at different bit rates.
This paper is organized as follows: Section 2 describes

the motivation of this work. Section 3 summarizes some
related works and publications. Section 4 describes the ar-
chitecture of the system. Section 5 presents the modeling,
implementation and prototyping approach. The results of
evaluation and test are shown in section 6. Finally, section
7 presents the conclusions and some possible directions for
future work and improvements.

II. M OTIVATION AND OBJECTIVES

Nowadays distributed embedded systems that require real-
time performance need a network capable of deterministic
access delay. In this context, CAN (Controller Area Net-
work) became well-known in the last years due to its low
price, electrical robustness and priority-based access con-
trol. However, the main disadvantage of any protocol using
a bus topology is that a single network segment is shared
between multiple components with direct electrical connec-
tions to each other and without proper error confinement.
As a consequence, it presents dependability limitations that
are inherent to its bus topology. In particular CAN lacks of
the tailored mechanisms to avoid that errors generated by
a single fault jeopardize the communication capabilities of
many nodes, possibly causing a general failure of the sys-
tem.
In order to solve some of those problems, an active hub

implementing the CAN fault confinement mechanisms can
be a good choice. However, if we want to connect networks
with different speed rates (act as a rate converter), forward
or send selectively CAN messages only in certain ports (act
as a multiplexer or demultiplexer), select the direction of
message propagation in subsystems (like a CAN diode) or
even prevent the propagation of error messages across the
entire network, it becomes necessary to use a CAN switch.
In fact, the use of switch in a CAN network brings more
flexibility, reliability and robustness and a set of features not
provided by a hub. Moreover, a hub shares the total band-
width among all users, while a switch provides a dedicated
line at full bandwidth between every two devices transmit-
ting to each other. It means that the usage of a switch is
much more efficient in terms of bandwidth than the usage
of an hub. In the 1990s, switches were much more costly
than hubs, and devices were carefully evaluated based on
the traffic requirements. By the turn of the century, switches
became much less expensive, and the popularity of hubs be-
gan to wane.

A. Switch functionalities

As described in [4], a CAN switch can have the following
functionalities (shown in figure 3):

CAN2CAN1

CAN3 1Mb

CAN4 500kb

CAN1

CAN1

CAN2

CAN3

CAN4

Switch
(5)

Switch
(1)

Switch
(3)

Host

System

SubSystem

S1

SubSystem

S2

Switch
(4)

SubSystem

Sn

CAN1

CAN2

CAN3

CAN4

Switch
(2)

CAN1 500Kb

CAN2 125Kb

CAN1

L
o

c
a

l 
C

A
N

B
u

s

Fig. 3 - Examples of a CAN switch functionalities.

1. Demultiplexer - The data from one CAN channel can
be demultiplexed to two or more channels. The data in
each output channel can be a filtered subset of the data
available in the input channel.

2. Multiplexer - The data from two or more CAN chan-
nels can be multiplexed into one CAN channel.

3. CAN Data Diode - The input CAN data bus can be
isolated from the output CAN bus. This allows for
several systems to hang off of the output CAN bus
and communicate to each other without having data
broadcast on the input CAN bus. In the example (3)
in figure 3, the Host System CAN data is received on
CAN1 and broadcast out on CAN2. The subsystems
are tied together on the common CAN2 bus. The sub-
systems can communicate between themselves and re-
ceive data from the Host System without broadcasting
any information on the Host System CAN bus.

4. Echo - The data received on the input CAN bus can
be echoed back onto the same CAN bus.

5. Rate Converter - Data can be received on the in-
put CAN channel at one baud rate and broadcasted
on the output CAN channel at a different baud rate.
In the example (5) presented in figure 3 CAN1 data
is received at 500Kb/s and broadcasted on CAN2 at
1Mb/s. CAN3 is received at 16.5Kb/s and broadcasted
on CAN4 at 500Kb/s.

A switch can also be a great help concerning the growth in
length of wiring that leads to excessive bus loading. Some
relief can be achieved by subdividing the system into mul-
tiple CAN networks. The purpose of a switch (like a gate-
way) is to transfer to the other CAN network only those
messages that are of interest for that network. For exam-
ple, a switch is ideal for software developers of electronic
control units in motor vehicle applications. It allows to per-
form complex handling of multiple CAN networks using a
standard implementation that is easier to integrate. Other
advantage is that it permits data exchange between the net-
works in two different routing levels: signal routing and
message routing. Furthermore, there are several ways to
implement a CAN switch. It can be implemented in soft-
ware running on processor and compiled from high-level



ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, N◦ 1, JUNHO 2009 57

languages (e.g. C/C++) allowing fast and easy changes
of implementation configurations. It can be programmed
in assembly language compiled for a RISC processor to
achieve a low latency between reception and transmission
of a CAN message. On the other hand, it can be imple-
mented fully in hardware based on a ASIC, which allows
achieving the highest performance and the lowest cost for
high volume markets. Finally, it can also be executed in
FPGA with the core logic developed using VHDL, which
combines the advantages of both traditional hardware and
software design techniques. FPGAs have the ability to de-
liver the necessary speed and parallelism of ASICs, while
maintaining the re-configurability and flexibility of soft-
ware. So FPGAs could be a great way to implement a CAN
switch due to low latency between reception and transmis-
sion of a CAN message. Its use with the VHDL language
and automatic synthesis tools also allows fast design cycles
and great flexibility, such as in the number of ports or mes-
sage memory dimensions.

III. R ELATED WORK

The CAN protocol is implemented in several applications
and its use is widespread in distributed embedded systems
due to its electrical robustness, low price and determinis-
tic access delay. Therefore, there is a great effort to de-
velop ways to solve the limitations imposed by the network
topology and make it more robust for real-time and safety
critical applications. Besides, there is still a high interest in
finding new solutions based on the well studied properties
of CAN [5], [6].
In [2], [3], [7] it is reported the development and results of

a CAN hub created to overcome the inability of preventing
global communication failures in CAN bus based system
(when a fault in some component of bus occurs). The au-
thors proposed a design of hub-based active star topology
called CANcentrate. Their hub is an active hub that pre-
vents error propagation from any of its ports to the others
and it is fully compatible with existing CAN controllers.
From the theoretical analysis point of view, they model both
the bus-based and the active star CAN communication sys-
tems using stochastic Petri Nets, and then evaluate which is
their probability of not suffering a severe failure. The first
results show that, for a given number of nodes, the CAN-
centrate is clearly more resistant to faults than a CAN bus
throughout the time. Moreover, even when considering a
CANcentrate network with more nodes than a CAN bus,
CANcentrate is better than CAN during some thousands of
hours [2], [3], [7].
For improved fault tolerance, the same research group that

developed and evaluated CANcentrate is also implement-
ing ReCANcentrate that is constituted by two or more hubs
working in parallel [8], [9]. Each pair of hubs is coupled
by means of two ore more special links called interlinks.
Within a fraction of the bit time, each hub sends to the
other hubs its resultant signal, i.e., the signal that results
from coupling the contributions of its own nodes and, at the
same time, it couples this signal with the one received from
the other hubs and broadcasts the result to its own nodes.
The ReCANcentrate hub includes the same error detection

mechanisms as in CANcentrate and additionally it is able to
detect and isolate a interlink or a given hub that is stuck-at
or bit-flipping. Moreover, a node is able to detect when a
given hub is faulty using the error detection mechanisms of
any commercial CAN controller and, then, it can stop us-
ing a faulty hub. Therefore, nodes can still communicate as
long as there is a non-faulty hub [8], [9]. Both CANcentrate
and ReCANcentrate active hub topologies need only an ex-
tra transceiver at a node to connect it to its hub port, i.e.,
one transceiver will connect it to the uplink and the other to
the downlink.

There is already an Embedded Software Component for
CAN-CAN Routing in vehicles designated by CANbedded
gateway [10]. The gateway is ideal for software developers
of electronic control units in motor vehicle applications.It
allows them to perform complex handling of multiple CAN
networks using a standard implementation that is easier to
integrate. The gateway component, supplied in the form of
C source code, permits data exchange between the networks
on two different routing levels: Signal routing and Message
routing (with or without data queuing). The required rout-
ing algorithm and the signals and messages to be routed are
automatically selected based on database attributes in the
communication matrix. The specifications of motor vehi-
cle OEMs are considered in the process. It is also possible
to perform manual configuration on the signal or message
level in the generation tool [10].

There are also some commercial tools such as a routing
gateway called CAN Matrix [4]. It is a multi-configurable
CAN gateway with several base and routing configurations
that can be used. The system is compliant with CAN2.0b
specification handling both standard 11-bit and extended
29-bit header (J1939) based on High Speed Dual Wire
diferencial electrical physical layer. The tool supports up
to five independent input CAN channels and up to five in-
dependent output channels. The CAN Matrix provides 5
optically isolated digital outputs that can be triggered onthe
reception of a specific CAN message on any one of the five
channels. Two additional RS232 serial ports can be used
for high speed serial to CAN conversion. Each serial data
byte is converted into a CAN message with a data length
of 2 bytes. The tool is based on a RISC processor that, ac-
cordingly to its developers, minimizes the latency between
reception and transmission of a CAN message. The RISC
processor is responsible only for receiving CAN messages
and then transmitting them on the appropriate output CAN
channel. Another processor handles all of the programming
and housekeeping.

Besides the claims of CAN Matrix developers regarding
short latency, we believe that better results can be achieved
with an FPGA-based hardware implementation, that com-
bines the advantages of an hardware implementation with
the flexibility of a software implementation. This makes us
to believe that this work has an extreme interest owing to
the great advantages of switch CAN described in the previ-
ous section.



58 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, N◦ 1, JUNHO 2009

Reset Clk

Rx
Tx

Activity

Rx
Tx
Activity

Port 0 Port N-1

Switch Core
(FPGA)

Fig. 4 - Interface of the CAN Switch.

CAN

Transceiver

CAN_H

CAN_L

Tx

Rx

CAN

Transceiver

CAN_L

CAN_H

Rx

Tx

RL

LED

J2

J1

RL

VDD

Rx

Tx

Activity

FPGA x8

Bus Connector

Fig. 5 - Structure of a CAN Switch port.

IV. A RCHITECTURE

In this section the architecture of the developed CAN
Switch is presented. The CAN Switch core, implement-
ing the message storing and forwarding functionalities, was
implemented in FPGA. It was modeled in VHDL allowing
the parametrization of the number of switch ports and the
number of message buffers available. Figure 4 represents
the interface of the CAN Switch, consisting of the signals
used to connect each port to a CAN transceiver (canRx and
canTx), the signals used to indicate the activity in each bus,
the synchronization input signal connected to an 48MHz
oscillator and a reset pin.
The switch was implemented using the Celoxica RC-10

FPGA development kit. However, this board only pro-
vides the FPGA and some auxiliary components. The CAN
physical layer transceivers and connectors required to con-
nect the switch to the CAN busses are provided in a exten-
sion daughter printed circuit board connected to the RC-10
through the I/O expansion headers.
Figure 5 depicts how the CAN Switch ports are connected

to the FPGA. Each port has one led used to indicate the
bus activity, one CAN bidirectional transceiver that pro-
vides the standard half-duplex transmit/receive capabilities
between the bus and the CAN controller and one jumper
that permits the insertion or removal of the termination re-
sistor between the CAN Hi and CAN Lo diferencial lines.
To make the board useful to other CAN network topolo-
gies and compatible with some expected future develop-
ments, such as CANcentrate which was mentioned above
and employees an active hub with unidirectional busses, an
additional transceiver was added. It offers the possibility of
simultaneously transmission and reception [2]. As defined
by some CAN physical layers, the bus connectors used were

DB9 and the second transceiver is connected to unused pins
in the standard CAN connector. The developed board has
eight ports and two socket for custom oscillators.
The internal structure of CAN Switch is shown in Figure

6 and is described next. A CAN protocol controller is re-
quired for each switch port. It is implemented by the CLAN
intelectual property synthesizable core. CLAN core is a
CAN 2.0B controller developed at Electronics, Telecom-
munications and Informatics Department of University of
Aveiro, was the CAN Controller used and it is described
in detail in [11]. It implements the link between physical
interface and the higher layers and is responsible for send-
ing and receiving CAN messages. It is able to work with
CAN 2.0A and with CAN2.0B specifications. In this ap-
plication it is programmed to operate at 1Mbit/seg, but it
can be easily changed to operate with others speed rates
as shown in [11]. The remaining of the switch consists of
additional logic and buffers to store and forward messages
correctly. Switch works in a time division multiplex way in
which ports are served cyclically in a static order. As the
frequency is not high enough to analyze all ports during a
CAN bit time, additional logic is needed to register some
signals generated by CLAN core. When a certain port is
attended the presence of a received message is analyzed. If
a message is received, it is stored in memory into a posi-
tion determined and assigned by the memory management
unit. Simultaneously, based on the ID of the received mes-
sage, the forwarding unit determines the destination portsin
which the message should be transmitted. Each port has an
associated memory in which information about messages
to be sent on that port is stored. This memory is a First-In-
First-Out memory and data stored on it corresponds to the
position in memory of the messages to be sent. As in the
reception, during transmission each port is attended one by
one. If the FIFO associated with the port being attended is
not empty and the corresponding bus is free, the position of
the next message to be transmitted on that port is read and
then message is transmitted. When a message is transmit-
ted the memory management unit is responsible for refresh
the memory containing the output ports of each message.
When a message is transmitted to all destination ports the
memory buffer is released and available to receive a new
message. The position to store the received message is ob-
tained using a priority encoder which determines the first
memory address free. In this first prototype the forward-
ing unit is implemented based on a static table. This table
is used to determine the ports to which each message must
be sent to and the search can be done in four clock cycles.
The memory to store messages has capacity to store up to
sixteen different messages. The described architecture is
represented in figure 6.

V. M ODELING, IMPLEMENTATION AND PROTOTYPING

The CAN Switch was modeled using VHDL (Very High
Speed Integrated Circuit Hardware Description Language).
The switch is parametrizable, allowing the number of
ports and memory sizes to be defined during synthesis.
In addition to the files created to model the switch, the
CLAN IP core files need to be included [11], namely: the



ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, N◦ 1, JUNHO 2009 59

Port 0 Port 1 ...
Port
N-1

Can
Transceiver

Can
Transceiver

...
Can

Transceiver

CLAN 0 CLAN 1 ... CLAN N-1

Port 0 
Fifo

Port 1 
Fifo

…

Port N-1
Fifo

Forwarding
Unit

Transmission
Unit

Memory
Pool

Memory
Management

FPGA

Fig. 6 - CAN Switch internal block diagram.

Fig. 7 - Hierarchy of the CAN Switch project.

CLANCore.ngc file containing the synthesized netlist, the
CAN.vhd file containing a package with generic CAN def-
initions and theCLANPublic.vhd file containing a package
with CLAN project specific definitions. The entire project
hierarchy with all files needed for synthesis and implemen-
tation is shown in figure 7
The final synthesis report can be seen in figure 8. The

CAN Switch was synthesized and implemented on a Xilinx
XC3S1500L Spartan-3L FPGA. It can operate up to 52Mhz
and occupies about 40% of the available slices (logic cells).
The switch was prototyped using a Celoxica RC-10 devel-

opment board extended with the CAN transceivers board
referred above. Figure 9 shows the developed proptotype.

Fig. 8 - Xilinx ISE synthesis report for the CAN Switch.

Fig. 9 - CAN Switch prototyping board.

CAN SWITCH PC 2

PIC 1

PIC 2

PIC 3

PC 1

Port 1

Port 2

Port 3

Port 4

Port 5

Fig. 10 - CAN Switch evaluation setup.

VI. T EST AND EVALUATION

To test the CAN Switch, the network shown in figure 10
was created. It consists of two personal computers con-
nected to the switch using two PCAN-USB devices and
three CAN PIC microcontrollers. The content of the for-
warding table used is presented on the table I, where the
outgoing ports for each message received are represented.
Network nodes configuration can be seen in the second and

third columns of the table II. They represent the ID of mes-
sages produced in each node and their period, respectively.
In fourth and fifth columns are indicated the messages re-
ceived by each node and respective period.
After observing the results, it is possible to conclude that

CAN Switch is working properly. The internal processing
latency measured from reception to transmission was12µs.



60 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, N◦ 1, JUNHO 2009

Memory Initialization
ID 1 2 3 4 5 10 11

Outgoing Ports 1 2 3 4 5 1,2 1,2,3,4

TABLE I

EXAMPLE OF A FORWARDING TABLE.

Port Produced Period Consumed Period
Messages Messages

1 4, 5 200ms 1 200ms

10, 11 100ms

2 1, 3 200ms 2, 10, 11 100ms

3 2 100ms 3 200ms

11 100ms

4 10 100ms 4 200ms

11 100ms

5 11 100ms 5 200ms

TABLE II

EVALUATION RESULTS.

This value was obtained by sending a periodic message with
period 1ms to port 2 and receiving it in port 1. This time
is the interval between the end of the message sent to CAN
switch and the start of message in the outgoing port. Con-
sidering the architecture of the switch and due to the loop to
attend all ports, the presented situation corresponds to the
worst case.

VII. C ONCLUSION AND FUTURE WORK

A CAN Switch prototype developed for educational and
research purposes was presented in this paper. Although it
is working correctly, it is important to refer that this is the
first implementation and many aspects must be improved.
Some limitations of the architecture and possible solutions
need to be addressed. First of all, the cyclic or TDMA
processing of all ports means that the processing latency
depends on the particular ports used. To improve that, in-
stead of multiplexing all ports over time, a parallel process-
ing scheme should be implemented to decrease the latency.
The storage capacity needs also to be increased because re-
sources can easily be exceeded if it is received a burst of
messages to be forwarded to the same port, because it has
capacity to store only sixteen messages. A better search-
ing algorithm is also needed. Currently, searching in the
forwarding table is done by looking sequentially for all en-
tries until the desired ID is found. To speedup this process,
this table should be replaced by a content addressable mem-
ory (CAM), which is expected to improve the performance
of the searching algorithm. Finally, message forwarding is
based on a static table. Although it would be interesting to
develop an automatic mechanism that allows nodes to dy-
namically register themselves in the switch as consumers
of messages with particular IDs. One possible solution for
this is the usage of the CAN Remote Transmission Request
(RTR) frames. This type of frames allows any node request
the transmission of a particular data message. It can also

be used to inform the switch that it wants to receive mes-
sages with the ID contained in RTR message. The dynamic
update of the forwarding table based on aging mechanisms
also permits the insertion or removal of nodes without ex-
plicitly changing the forwarding table. If a message is not
received during a certain period it could mean that the re-
spective node was removed and the corresponding entry of
the forwarding table can be removed. This contributes to a
more efficient use of the several switch memories.

REFERENCES

[1] Robert Bosch GmbH, “CAN specification version 2.0”,
http://www.can.bosch.com, Sept. 1991.

[2] Manuel Barranco, Julián Proenza, Guillermo Rodrı́guez Navas, and
Luis Almeida, “An active star topology for improving fault confine-
ment in CAN networks”,IEEE Transactions on industrial informat-
ics, vol. 2, pp. 78–85, 2006.

[3] Manuel Barranco, Guillermo Rodriguez-Navas, Julian Proenza, and
Luis Miguel Pinho de Almeida, “CANcentrate: an active star topol-
ogy for can networks”, inIEEE International Workshop on Factory
Communication Systems, 2004, pp. 219–228.

[4] CANMATRIX, “CAN bus routing gateway data sheet”,
http://www.eritools.com/CANMATRIX.pdf, 2006.

[5] S. Cavalieri, “Meeting real-time constraints in CAN”,IEEE Trans-
actions on industrial informatics, vol. 1, pp. 124–135, 2005.

[6] T. Nolte, M. Nolin, and H. A. Hansson, “Real-time server-based
communication with CAN”,IEEE Transactions on industrial infor-
matics, vol. 1, pp. 192–201, 2005.

[7] M. Barranco, J. Proenza, and L. Almeida, “First results of the as-
sessment of the improvement of error containment achieved by can-
centrate”,IEEE International Workshop on Factory Communication
Systems, pp. 75–78, 2006.

[8] M. Barranco, L. Almeida, and J. Proenza, “ReCANcentrate: A repli-
cated star topology for CAN networks”,ETFA 2005. 10th IEEE In-
ternational Conference on Emerging Technologies and Factory Au-
tomation, Catania, Italy, vol. 2, pp. 469–476, 2005.

[9] M. Barranco, L. Almeida, and J. Proenza, “Experimental assessment
of ReCANcentrate, a replicated star topology for CAN”,SAE 2006
World Congress, Detroit, Michigan, USA, 2006.

[10] Vector Informatik GmbH, “CANbedded Gateway”, www.vector-
informatik.com.

[11] A. S. R. Oliveira, N. L. Arqueiro, and P. N. Fonseca, “CLAN - a
technology independent synthesizable can controller”,CAN in Au-
tomation, pp. 1–8, 2005.

[12] M. Barranco, J. Proenza, G. Rodriguez-Navas, and L. Almeida, “A
can hub with improved error detection and isolation”, inICC 2005,
10th Int. CAN Conference, 2005.

[13] Manuel Barranco, Guillermo Rodriguez-Navas, Julian Proenza,
and Luis Miguel Pinho de Almeida, “Pushing error contain-
ment and fault tolerance in CAN by means of star topolo-
gies: CANcentrate and ReCANcentrate”, http://dmi.uib.es/ mbar-
ranco/srvlsestars/description.htm.


