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Abstract — This paper addresses the state of the art of 

macromodels’ development for high speed digital output 

buffers for Signal Integrity (SI) analysis and simultaneous 

switching noise (SSN). An overview of the behavioral 

black-box techniques used by the Input/Output Buffer 

Information Specification (IBIS) and the previous 

nonlinear parametric models is presented.  Then, the 

performance of a sigmoid basis functions’ artificial neural 

network is investigated to model the device behavior. The 

proposed alternative is based on the estimation of suitable 

mathematical equations reproducing the external behavior 

of the device via system identification theory.  

 

Index Terms — Digital output buffer/driver, 

Macromodeling, sigmoid basis function, signal integrity, 

system identification. 

I. INTRODUCTION 

The trend in digital electronic systems is directed 

towards higher operation frequency, complex packaging 

density and larger I/O ports count. This is due to 

advances in fabrication technology and creates a 

completely new design scenario. As a consequence, the 

accurate prediction of the signals propagating on system 

interconnects becomes increasingly important for design 

engineers because it allows to perform both SI analysis 

and Electromagnetic Compatibility (EMC) assessment. 

Such prediction is carried out in a time domain circuit 

simulator to allow the detailed analysis of the 

interactions between the digital Integrated Circuits (IC) 

periphery devices and the loading interconnects lines. 

Digital Input/Output buffers are the key components to 

successfully transmit data between electronic devices. 

They play an important role for SI and SSN simulation 

and timing analysis because they contain complex 

functional parts and are in line with the IC’s high 

number of pins. Moreover, I/O buffers drive high 

currents when compared to IC logic core due to their 

large transistors size. Thus, they are the bottleneck of the 

IC in terms of switching speed. For these reasons, 

macromodeling I/O buffers to capture their nonlinear 

dynamic behavior are a challenging task that motivates 

this research activity [1]-[4]. In fact, output buffers 

(drivers) are more difficult to model, due to their 

strongly nonlinear and dynamic properties, than the 

input buffers (receivers) which can be often 

approximated as linear capacitive and resistive 

impedance components. 

In this paper, we present the previous driver 

macromodels discussing the main advantages and 

limitations of each approach to then proceed to an 

alternative parametric nonlinear dynamic behavioral 

model based on Sigmoidal Basis Function (SBF) 

Artificial Neural Networks (ANN. The remaining of this 

paper is organized as follows. Section II reviews the 

work that has been developed to model the problem at 

hand. Section III describes in detail the proposed 

modeling process using SBF ANN as an example and 

Section IV gives a brief conclusion to the work. 

II. STATE OF THE ART  

Basically, macromodels can be classified in two 

classes: physically based and behaviorally based models. 

In fact, the traditional method for output buffers 

modeling amounts to describe the device behavior by 

means of a detailed physical model based on its internal 

structure. This transistor-level description, considered as 

the reference for the device, provides the most accurate 

simulation result. Unfortunately, the model completely 

discloses the internal details of the device. In addition, 

the use of complex output driver transistor level models, 

which are generally large in size, place a large 

computation burden on the circuit solver, especially in 

the case of a large multi-IO analysis such as SSN. 

Therefore, the simulation is highly time consuming and 

needs considerable resources in term of CPU 

computation and memory storage.  Moreover, they are 

non-portable, since they rely on encrypted libraries 

specific to certain simulators.  

One way of reducing this complexity has been to use 

driver macromodels based on the behavioral observation 

of the input and output relationship that yields to 

computationally much simpler models. 

In the following subsections we will detail the 

behavioral macromodels based on an equivalent circuit 

model (IBIS) and the nonlinear parametric models. 

A. IBIS method 

There have been several techniques proposed for 

generating driver behavioral macromodels over the last 

decade. The most popular of such methods is IBIS [1]. 

The core of IBIS consists of lookup tables of current 

versus voltage and voltage-time to describe the pull-up, 

pull-down, and clamp diodes along with some package 

information, as shown in Fig. 1. 
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Fig. 1: Key portions of an IBIS driver and receiver model 

As driver technology gets increasingly complicated and 

rise time of input signal gets increasingly smaller, 

important considerations such as SSN becomes a major 

consideration when simulating multiple IO drivers in the 

IC. The enhancement of IBIS model was focused on 

SSN simulation [2], [3] by addressing its major 

deficiencies, mainly the predriver and crossbar currents 

and the local power and ground signals bounce. That has 

been accommodated in the IBIS model without the need 

to change its original structure and philosophy. This is 

done by complimenting the IBIS model with a black-box 

that contains the error function parameters between the 

original IBIS and the transistor netlist model. First, for 

the predriver current error correction, a correlation was 

observed Fig.2 (b) [2] between the difference current at 

the  pin ( ) that only occurs during the up 

and down transition Fig. 2(a) [2] and the voltage levels 

between the  and . This was corrected by 

estimating polynomial coefficients for voltage controlled 

current source implementation: 

 
 

Besides, the gate modulation effect error was corrected 

by adding a black box submodel that captures the current 

difference at the output as a function of the power and 

ground voltage.  in (2) is obtained using an IBIS 

model where the output current for the device is 

extracted from current-voltage, I-V,  tables. To account 

for the power supply variations, a scaling coefficient K is 

introduced (2). K is a function of the instantaneous 

power supply voltage and the voltage at which the I-V 

tables in the IBIS models were created (2). The effective 

output current thus scales corresponding to the actual 

voltage in the power and ground nodes. 

 

 

 

Fig. 2. Power drop and ground bounce correlate with the switching of 

the buffer (a). There is a high correlation between the difference in 

current (solid line) at the   pin between the transistor level model 

and the behavioral (IBIS) model and V(Pwr-Gnd) (dashed line) (b). 

 

 

 is the normal value at which the I-V tables in the 

IBIS models are created. is the instantaneous 

voltage between the power and ground nodes of the I/O 

buffer. This voltage is not constant as , but reflects 

the noise due to switching in the local power and ground 

nodes as shown in Fig. 5(a). N is a user dependent factor 

for adjusting the K factor and is usually the number of 

the drivers that are switching simultaneously in the 

system. 

Despite its commercial success, IBIS model has 

intrinsic limitations. In fact, the simulation or 

measurement strategies have been pre-determined by the 

IBIS specification in order to generate the experimental 

data supported by EDA tools. This makes IBIS model 

unsuitable to include the higher-order dynamics 

presented by cutting-edge driver technologies, as it 

mainly relies on the static I-V information revealed on 

the DC characteristics. 

It was motivated by these IBIS model deficiencies that, 

recently, a newer class of parametric black-box methods 

[4]-[7] was proposed to better capture the I/O driver 

dynamics, via system identification theory. In addition to 

the static I-V characteristics used in IBIS models, this 

class of methods uses Radial Basis Functions (RBF) [??] 

or Spline Function With Finite Time Difference 

(SFWTD) [??] in order to obtain “higher-order” 

accuracy in capturing the output behavior of driver 

circuits. 
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B. Radial Basis Functions (RBF) method 

The discrete time parametric nonlinear dynamic model 

representation can be written as: 

 

 
 

     

where F[.] is a suitable mathematical representation, 

depending on the parameters collected in vector  and 

the regressor vector  as shown in Fig. 3. 

 

 
Fig. 3: The observed electrical behavior IC driver circuit is reproduced 

by a suitable F[.] mathematical relation. 

In (3) the output buffer output current is expressed in 

terms of the output buffer voltage using a summation of 

basis functions. To create such a model, one needs to 

carefully stimulate the output port of the buffer to 

expose its dynamics. The data obtained is then fitted 

with either RBFs or splines. Finally, the generated 

macromodel is represented as an equivalent sub-circuit, 

which is implemented in SPICE and simulated with load 

interconnects. It has been shown (e.g., [5]-[7]) that these 

methods are capable of representing the driver circuit 

quite well and to capture several effects like crosstalk 

and SSN. 

The RBF approach follows the work done by Professor 

Canavero’s group at Politecnico di Torino, in Italy. The 

output current and voltage are related using a piece-wise 

parametric formulation: 

 

 

 
 

 

In (4),  is the output buffer output current, f1[.] and 

f2[.] are the sub-models that relate the output buffer 

output current to the output voltage for the buffers input 

digital HIGH and LOW states, respectively. The 

transition from one logic state to another is done with the 

help of weighting functions and .These time-

varying weighting functions act as switches between the 

sub-models f1[.] and f2[.] which are expressed as a 

summation of radial basis functions (5), where M is the 

number of basis functions needed for f1[.] or f2[.] to 

accurately model the digital driver. In (5), Φ is the 

asymptotically increasing, or decreasing, basis function 

and θj is the weight of the basis function Φ. The centers 

of the basis functions are defined by cj and the width, or 

spread, parameter is defined by β. The regressor vector x 

in (6) collects the past r samples of the output buffer 

output voltage ( ) and the output buffer output current 

( ) along with the present sample of the driver output 

voltage. The parameter r has been called the dynamic 

order of the model. The dynamic order adopted for the 

model depends on the complexity of the output buffer 

that is being modeled. 

 

 
 

 

Although RBF models approximate driver circuits 

accurately and have been applied to complex circuits 

with multiple ports [8]-[10], they have some inherent 

limitations. One of such limitations is the rise of model 

complexity with the decrease in input rise time for the 

driver circuit because the driver dynamic characteristics 

start dominating the static characteristics. This leads to a 

significant increase in the number of basis functions 

needed to accurately model the driver circuit. Moreover, 

the efficiency of black-box methods relies heavily on the 

choice of model representations, data sets generation and 

interpretation [7]. 

C. Spline Function With Finite Time Difference 

(SFWTD) method 

The SFWTD method basically follows the research 

work carried out by Mutnury and his co-authors in 

Georgia Institute of Technology, in the USA. This 

method takes into account both the static and the 

dynamic characteristics of the drivers such as the 

current–voltage relationship and memory effects. 

The output current can be expressed as a function of the 

output voltage using static characteristics. Let submodels 

and  represent the static characteristic relation 

between the driver output current and output voltage for 

a driver when the driver input is set HIGH and LOW, 

respectively: 

 
 

where, As are constants,  is the driver output voltage, 

and the polynomial degree m is usually less than 5. 

When the driver input is set HIGH at time instant ( k -1), 

the current at the output, , can be expressed as : 
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The incremental change in the driver output current 

 is the difference between the present instance (k) 

and previous time instance ( k – 1 ) values of sub-model 

f1,s as shown: 

 

 
 

or  

 

 

 
Once  is calculated, the first derivative of driver 

output current  can be approximated as: 

 

 
 

Where  is the sampling time. The effect of dynamic 

behavior when the driver input is HIGH is captured in

. Similarly, the effect of dynamic behavior when the 

driver input is LOW is captured by . Therefore, 

dynamic behavior can be added to static submodels f1 

and f2 as shown in (4)  

 

 
 

where p and pp are constants whose magnitude can be 

estimated by calculating the least mean square error 

between  and the transistor-level driver output 

current values for inputs High/Low, respectively. It is 

important to note that there is no limitation on the 

number of previous output current time instants that can 

be added to the static sub-models: 

 

 
 

Once  and  are estimated for input HIGH and 

LOW, the relationship between the driver output current 

and voltage can be expressed as shown in (4). 

 Typically, for most of the driver circuits, SFWFTD 

models need one previous time instance to accurately 

model the driver current voltage characteristics. 

Unfortunately, as the model is based on a polynomial 

expansion, it has inherent local approximating 

properties. On the other hand, its parameters can be 

extracted very easily using the least squares regression 

method. In fact, we cannot evaluate the polynomial 

model outside the input range where its parameters were 

extracted because the error will increase dramatically 

[10]. 

III. SIGMOID BASIS FUNCTION BASED ARTIFICIAL 

NEURAL NETWORK PARAMETRIC MODELING 

PROCESS 

As we could see from the discussion of the poor 

extrapolation properties of polynomials, it would be 

better to use models based on activation functions, or 

basis functions, which are bounded in the output 

amplitude [10] (e.g. sigmoidal functions Fig. 4). The 

feed-forward ANN presents a good alternative to model 

the static characteristics with less parameters because the 

ANN constitute global approximants in modeling 

strongly nonlinear systems, do not share the catastrophic 

degradation of polynomials outside the zone of training 

and its basis functions show an input output behavior 

that is similar to the one expected for the I-V 

relationship of the pull-up and pull-down devices. 

 

 
Fig. 4: Tan-Sigmoid and Radial Basis activation functions used in 

ANN are bounded in output amplitude. 

In the following subsections we will illustrate the 

parametric model extraction procedure by means of the 

SBF alternative to model the driver static nonlinearity 

and its mild dynamics along with the power and ground 

bounce analysis. 

A. SBF parametric model selection 

For any kind of technology, the driver circuits are 

composed by a cascade of inverter stages with growing 

driven capabilities interfacing the internal logic core and 

loading the external package components. The generic 

driver structure is depicted in Fig. 5. The final stage’s 

transistors of the drivers are arranged as a pull-up and 
pull-down network, which contribute to the dominant 

electrical behavior of the device (high dimensions of the 

MOSFETS), while the pre-drivers mostly act as a 

resistive path feeding the Cgs capacitances of the last 

stage.  

The time varying nature of the device due to switching 

propriety implies the use two separate SBF submodels 

accounting for both the static and dynamic effect: 
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Fig. 5: Generic multistage driver and its relevant electric variables. 

 
 

 
 

Where M  is the number of sigmoid activation functions 

needed to accurately mimic the nonlinearity. Since the 

model is nonlinear with respect to its parameters, the 

Levenberg-Marquart nonlinear optimization algorithm is 

used to estimate the Ai, Bi, C and Wi parameters, 

minimizing the mean square error cost function between 

the model and the transistor level current outputs [5]. It 

is worth to note that both IBIS and the previous 

nonlinear parametric modeling approaches use the two-

piece model representation. 

B. Nonlinear static behavior model  

Since the nonlinear static characteristic contribute to 

the dominant behaviour of the driver, this section 

presents an alternative to describe this nonlinearity using 

SBF expansions [11]. Besides, the nonlinear I-V 

characteristic of last stage driver transistors behave as 

hyperbolic tangents. That is why this model structure is 

believed to be more suitable for fitting the actual 

constitutive relations of IC drivers and usually lead to 

simpler macromodels than those based on RBF.  The 

SBF model of the static characteristic is the following: 

 

 
 

The model representation contains no delays (previous 

or past sample) for either the input or the output signals, 

nor it depends on the output. Then, the estimation of 

parameters (weighting and bias) of the static 

representation sub-model  and  can be 

performed following a simple feed-forward topology. 

This ANN model has one or more hidden layers of tanh-

sigmoid neurons followed by an output layer of linear 

neurons as shown in Fig. 6. Multiple layers of neurons 

with nonlinear transfer functions allow the network to 

learn nonlinear and linear relationships between input 

and output vectors. The linear output layer lets the 

network produce values outside the range -1 to +1. 

 
Fig. 6: Structure of feed-forward ANN (source: MATLAB). 

In addition, feed-forward ANN is nonlinear in these 

parameters, which requires a nonlinear parameter 

identification process, or optimization algorithm, for 

adjusting the weights and biases. This imposes some 

limitations such as the need for providing an initial 

condition for the parameter vector, that the algorithm 

may not converge and the problem of converging to one 

of a potential large set of local minima. 

The estimation of sub-model parameters of  and  

requires the identification signals (  and  ) which are 

obtained by applying a triangle voltage waveform to the 

output terminals and by recording the corresponding 

output current. Although this could be done at the 

laboratory, it is usually performed with a transient 

response of the transistor-level simulation from cadence 

using spectre simulator, while the buffer input is in a 

fixed logic state. Such an experiment is described by the 

ideal setup of Fig. 7. 

The training starts by loading the I-V data and adjusting 

the number of hyperbolic tangent hidden neurons. Then, 

we divide the set of data into training and validation data 

to improve the generalization properties of the network. 

After that, we should scale the input-output data between 

-1 and +1. After training the network using the 

optimization Levenberg-Marquardt algorithm, we should 

be able to extract the parameters that fit the driver 

submodels nonlinear static characteristic. 

 

 
Fig. 7: Simulation setup for the steady state identification signals for 

submodels. The clamp diodes start to conduct as the output voltage 

exceeds the supply voltage bounds. 

During the training process, the weight and bias 

parameters are iteratively adjusted to minimize the mean 

square error cost function: 
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where  is the sampled output 

identification signal, Ts is the sampling period, N is the 

total number of samples and is the response of 

model (4) to the sampled input identification signal 

 , as illustrated in Fig. 8. 

 

 
Fig. 8: The weight and bias parameters are iteratively adjusted during 

the training process (source: MATLAB). 

In Fig. 8, the network is adjusted, based on a 

comparison of the output and the target, until the 

network output matches the target. Typically, many such 

input/target pairs are needed to train a network. 

However, care should be taken regarding the problem of 

over fitting during the training process because the ANN 

may not only learn to approximate the device output but 

also the measurement/simulation noise in the data. When 

this happens, the model is known to loose generalization 

(or its desired predictive) capabilities. 

After extracting the bias and weight parameters of the 

trained networks with two sigmoid functions in the 

hidden layer, we are able to write the submodels 

mathematical equation that mimic the nonlinear behavior 

of the device with a good accuracy. In addition, Fig. 9 

and 10 confirm that the feed-forward architecture does 

have the capability to capture the static nonlinearity of 

the output buffer without error for both the pull-up and 

pull-down characteristics. 
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Fig. 9: Function fit for submodel f1: Transistor-level (straight line) and 

feed-forward ANN model (dotted line). 
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Fig. 10: Function fit for submodel f2. Transistor-level (straight line) 

and feed-forward ANN model (dotted line). 

However, the driver circuit shows inherent capacitive 

dynamic effect when it is driven by a signal close to its 

operating frequency. Therefore, the static model 

approximation which has no feedback elements and 

contains no delays, is no longer valid if we want to 

preserve transistor-level model accuracy. A good 

practice would be to use a dynamic ANN - for instance 

the Nonlinear Autoregressive Network with eXogenous 

inputs (NARX)  - that has the ability to model such 

devices because the output depends not only on the 

current input to the network, but also on the current or 

previous inputs, outputs, or states of the network.  The 

defining equation for the dynamic nonlinear recursive 

model would then be: 

 

 
 

The number of previous input and output time instances 

 and  required to model the system accurately is 

dependent on the complexity of the system being 

modeled. The input-output behavior can be represented 

by means of the recurrent ANN as illustrated in Fig. 11. 

 

 
Fig. 11: Scheme used in the training process of the NARX model. 

Once submodels f1 and f2 are estimated, the switching 

coefficients, or timing functions,  and  are obtained 

from the second set of identification signals. Such 

identification signals are the voltage and current 

responses recorded during state transitions for two 

different load conditions. The ideal setup for the 

generation of such signals is shown in Fig. 12. 
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Fig. 12: Simulation setup for the generation of the identification 

signals for the weight coefficients  and . The current and 

voltage data are recorded while the driver is loaded by two different 

loads and is driven to perform an up and down state transitions [4]. 

For a single Low-to-High (up) transition and for two 

different port loads (a) and (b), the sequences 

,  are recorded. Their use 

in (4) leads to the following set of two equations [8]:  

 

 
 

 

The elementary weight sequences  and   

describing the transition can be obtained by simple linear 

inversion of (17) [8]: 

 

 
 

The same procedure, repeated for a High-to-Low 

(down) transition, allows to compute two additional 

elementary sequences . Finally, a 

proper concatenation of  and 

 produces the final form of the 

weight coefficients for a given bit pattern. 

Fig. 13 shows an example of the weighting functions 

generated from 0.35μm-3,3V Austria-Micro-Systems 

driver model for one resistive load, Za, of 50 Ohm and 

another load, Zb, composed of a 50 Ohm resistor and a + 

3.3 V dc bias. 

In principle, there are no restrictions on loads Za and Zb, 

which can be also real sources stimulating the output 

port. The best loads would be those allowing   

and  to explore the widest possible region of the 

excitation regressor space. Within the class of resistive 

circuits, it can be proven that the best choice is a resistor 

for load (a) and the series connection of a resistor and a 

Vdd battery for load (b). Finally, the obtained model is 

implemented as a subcircuit in any time domain 

simulator. 

 

 
Fig. 13: Weighting functions w

1 
(straight line) and w

2 
(dotted line) that 

control the switching between f
1 
and f

2
. 

C.Modeling the Power and ground bounce 

Higher levels of integration, higher clock operation 

frequencies and lower operational voltage make the 

ground bounce effects more serious in modern chip 

design processes. In an output buffer circuit, power 

supply noise and ground noise affect the output voltage 

and current of the output buffer. Switching of multiple 

output buffers simultaneously results in large transient 

currents through the power supply rails which results in 

SSN. To simplify the SSN analysis, we reduce the block 

diagram of chip-package to a simpler circuit model 

alluded to in Fig. 14. 

 

 
Fig. 14: Block diagram of the chip-package interface. 

In fact, the output pad driver is the major contributor to 

SSN because of large transient currents flowing through 

the bounding wires, lead frame and pin parasitic 

inductance. This will cause unwanted fluctuation that 

can degrade circuit performance or even cause 

malfunction when the noise peak value exceeds the 

threshold voltage of the transistor. And this is also the 

main source for the electromagnetic interference of an 

IC. 

The nonlinear parametric modeling can be extended to 

multiple ports to capture SSN by adding   in the 

regressor vector x (4) as shown in (19): 

 

 
 

 

The transient responses for the estimation of the model 

parameters are obtained by driving the model devices 

with  and  signals that are multilevel noisy 

waveforms. The models of the power supply ports are 
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needed for the simulation of switching noise effects and 

yield the driver supply current  as a function of the 

supply port voltage  and of the output port voltage , 

as shown in Fig. 15.  

 

 
Fig.15: General structure of a driver circuit and its relevant (output and 

power supply) port electric variables [8]. 

The power supply port model enabling the SSN 

simulation is: 

 

 
 

where  takes into account the supply current drawn 

by the driver stages that precede the last one, and  

and  are the parametric submodels of the current 

of the last driver stage when it operates in the LOW and 

HIGH logic states, respectively, and   and  

are the usual weighting coefficients describing state 

switching. 

IV. CONCLUSION 

In this paper the previous approaches of IC output 

buffer macromodeling are revised. Among the available 

possibilities, we concentrate on the black-box modeling 

approach via system identification techniques to obtain 

efficient parametric models whose accuracy must be 

often compromised with the simplicity of 

implementation for large scale SI and SSN simulation 

analysis. An example of a nonlinear parametric model 

based on SBF expansion is investigated to illustrate the 

development procedure and to figure out the main 

advantages and limitations. 

The present study is believed to contribute to the 

systematic discussion of the open research issues of the 

IC modeling process and so to obtain macromodels that 

are amenable to overcome the limitations of the 

methodologies considered so far, such as the IBIS 

industry standard, the RBF and the SFWFTD methods.  
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