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Abstract— This paper presents an overview of the most 

common techniques employed for solving the SAT problem. 

Such techniques have allowed the SAT solvers to be reliable 

enough in order to solve both random and practical instances. 

Another point focused in this paper is the applicability of 

Reconfigurable Systems in order to accelerate the SAT 

solving process. An emphasis to HW/SW based solutions will 

be done and an analysis of those systems will be done. This 

solution is widely used today, allowing a system to take 

advantage from both the high speed personal computer and, 

at the same time, parallelism and flexibility provided by 

reconfigurable systems. 

 

Index Terms – Boolean Satisfiability, Hardware/Software 

partitioning, Reconfigurable Systems, Application Specific 

Processors.  

I. INTRODUCTION 

 

The Boolean Satisfiability (SAT) is a very well known 

NP-complete problem, which has been studied in a deeper 

way since 60’s. Given a propositional or Boolean formula, 

the problem consists of determining if there is any 

variables’ assignment that produces a given formula to be 

satisfied.  Therefore, some operations and decisions must 

be performed attempting either to find a solution for a 

given instance or to detect that there is no solution. The 

entity that commands all the operations needed is referred 

to as SAT Solver. 

In the last decades, these solvers have begun to be 

intensively used in industrial applications, which has 

construct a faster solver as well as to increase the variable 

number that can be processed. SAT solvers are used in the 

electronic design automation (EDA) industry for a variety 

of tasks, including microprocessor verification [1], AI 

planning [2], automatic test pattern generation for circuits 

[3], cryptanalysis [4], verification and testing of digital 

systems [5] among others. 

The SAT solvers can be separated in two categories: 

Complete or Systematic and Incomplete Solvers. The 

first are characterized by the use of an algorithm which 

always produces a result, i.e. either gives a possible 

assignment of variables for a formula or proves that 

formula is unsatisfiable (e.g.: Grasp [6] zChaff [7], 

SATO[8], BerkMin[9], MiniSat [10], etc.). Alternatively, 

Incomplete Solvers cannot ensure that an assignment of 

variables is reached, even if it exists, or prove that a 

formula cannot be satisfied, and they usually have a pre-set 

time to solve the instance (e.g. GSAT[11], WalkSAT[12]). 

 

. 

The latter are based on Local Search instead of the 

Backtracking or Branching techniques used by complete 

solvers. 

About the Solver’s implementations, along the latest years 

different approaches were seen for developing such 

systems. From SW, to SW/HW and only HW solutions, 

different methods have been proposed. 

In this paper, some of the most commonly used 

techniques are presented. Since most of the future work 

will be done using a SW/HW approach, some of the 

implementations using that approach are presented, namely 

using reconfigurable hardware (e.g. FPGAs, CPLDs). 

 

The remainder of the paper is organized in four sections. 

Section II provides some of the basic concepts such as 

problem’s representation and some definitions essential to 

understand the SAT problem. Since most of the 

implementations employ a complete SAT solver, in Section 

III the basic template for all the complete solvers is 

presented, as well as a deep analysis of the most successful 

techniques concerned to this basic template. Section IV 

discusses some SW/HW implementations that take 

advantages from this partitioning, i.e., implementations that 

employ solving tasks in both SW and HW and not only 

some preprocessing before the solving procedure. Finally, 

concluding remarks are given in section V. 

 

II. PROBLEM’S REPRESENTATION 

A Boolean formula consists in a logic expression which 

depending on the variables values (TRUE or FALSE) can 

produce either a true (Satisfiable) or a false (unsatisfiable) 

result. The most common representations are: CNF 

(conjunctive normal form) or DNF (Disjunctive normal 

form). In the first case the formula is represented using 

products of sums instead of sums of products (which is the 

DNF representation).  

For a better comprehension in the next sections, some of 

the basic definitions will be now present. Let us consider 

the following Boolean formula in CNF representation with 

four variables (X1, X2, X3, X4). 
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As noticed in the example above, a Boolean formula is 

composed of clauses and each element within it is referred 

to as a literal. A clause that only has one element is 

designated a unit clause. In some applications the formula 

may have a fixed number of literals, k, in each clause. In 

this case the problem is called k-Sat with k  N and k ≥ 2. 

Since all techniques and implementations are based in the 

CNF representation, it will be used in the next sections. 

III. DPLL  

 

Researchers have begun to take interest in the SAT 

problem long decades ago. Since that time, a large number 

of techniques and implementations were proposed trying to 

overcome some technical problems such as: memory 

explosion, resolution speed, number of variables, number 

of clauses, etc. However, even though great advances were 

reached, the basic template for most of the SAT solvers is 

still almost the same. The first template was proposed in 

1960 and is referred as DP algorithm [13]. This algorithm 

is affected by memory explosion problem. In order to solve 

this problem, an improvement was proposed in 1962 by M. 

Davis, G. Logemann, and D. Loveland [14] which was 

accepted as a basic template for the complete SAT solvers. 

This is referred to as DPLL algorithm. A pseudo-code of 

this algorithm is the following:  

 

 

status = preprocess(); 

if (status!=UNKNOWN) return status; 

while(1) { 

decide_next_branch(); 

while (true) { 

      status = deduce(); 

      if (status == CONFLICT) { 

   blevel = analyze_conflict(); 

   if (blevel == 0) return UNSATISFIABLE; 

           else backtrack(blevel); 

      } 

     else if (status == SATISFIABLE) 

        return SATISFIABLE; 

     else break; 

 } 

 

DPLL algorithm is based on the Branch and Search 

philosophy, i.e., the algorithm follows a determinate branch 

trying to find out one solution. In case that it is impossible 

to find it by the chosen branch, the algorithm does some 

kind of backtracking process and restarts by following 

another branch, repeating this until some solution is 

reached or, in the worst case, finds that there is no possible 

solution for that particular instance. 

Let us now present an overview of the DPLL algorithm. 

Further details about each function will be given in later 

sections. 

The algorithm initiates with all the variables unassigned. 

At this point the function preprocess is called. Within it, 

some processing will be done on the instance in order to 

get a more efficient representation due to some variations 

on this function’s algorithm. In a later section, an example 

of preprocessing will be given. When all the preprocessing 

is done the construction of the solution begins. This process 

will start with the function decide_next_branch. The latter 

determines, through some specific algorithm, which will be 

the next variable to be assigned. This decision is then 

propagated, i.e., when a variable is chosen, that decision 

will simplify the problem, and as a consequence some 

variables should be assigned with a specific value 

(implication) in order to satisfy some clause. We refer this 

process as deduce. For example: Imagine that the variable 

 is assigned to value ‘0’ then the 2nd clause only have one 

more literal to be assigned . Thus the variable  is 

implied because it must be assign to value ‘1’ in order to 

satisfy the 2nd clause. 

When all the implications are solved, the algorithm needs 

to test if those attributions inferred some conflict, i.e., if 

there is any variable that must be assigned to both value 

TRUE in one clause and value FALSE in another clause. If 

it happens, backtracking will be done by the function 

analyze_conflict. Another task employed by this function 

(in the more recent solvers) is to take some information 

about the conflict and learning with it (conflict-driven 

learning) in order to prune search space in the future. 

Then, the output variable blevel is tested. If it reaches zero 

value it means that there is no more possible backtracking 

and so the instance is impossible to solve. In the other case, 

if there is no conflict, the solver will test if the satisfiable 

condition was reached. If it is TRUE all the process will be 

finished. If not, all the cycle explained above will be 

repeated until either the satisfiable condition is reached or 

it has been proved that the instance is impossible to be 

satisfied. 

Now that we have a general idea of the presented 

functions, let us analyze each function more deeply. 

 

A. Decide Next Branch (Branch Heuristics) or Decision 

Heuristics 

Decide Next Branch (or Decision Heuristics) will choose 

the next variable to be assigned. The concept is easy to 

understand, however a very important issue will appear 

immediately: ‘which variable should be assigned next?’. 

The importance of choosing the right variable is a very well 

known problem and different procedures will lead to 

different search trees as well as different memory 

consumptions, solving time, etc. 

In the earlier years, the proposed algorithms tried to 

satisfy the largest number of clauses at once or infuse the 

largest number of implications. In [15] and [16] such 

techniques have been applied and tested. These are based 

on statistics, which is useful when we are dealing with 

random SAT instances, but in structured problems they do 

not get relevant information, making this approach 

inefficient for those instances [17]. An alternative to this 

method was first presented in [18] when the author 

proposed the use of literal count heuristics i.e., the 
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algorithm counts in each phase of the solving process the 

number of the unsatisfied clauses in which a certain 

variable appears. It was proved that if we choose the 

variable to be assigned as the variable with the dynamic 

largest combined sum (DLIS), we can get satisfactory 

results. It must be noticed that with this technique the 

counters are state-dependent, which means that each time 

the function decide_next_branch is invoked, all the 

counters must be updated in order to determine the variable 

with DLIS. Another approach similar to DLIS is the 

VSIDS which was introduced in [7], nowadays being a 

reference. Thus, it will now be explained in more detail. 

Schemes which derivate from VSIDS - like BerkMin [9], 

MiniSat[10], Jerusat[19] and RSat [20] - will not be 

discussed in this paper. 

VSIDS - VARIABLE STATE INDEPENDENT DECAYING SUM 

In this scheme a variable is chosen by its weight (one 

counter per variable) being periodically decayed or boosted 

when it appears in a conflict clause (redundant clause 

added to the original formula due to a learning process) 

Initially all the counters, s(v),v=1..Number of variables, 

have their own number of occurrences in the Boolean 

Formula. When a conflict clause with variable v1 is added, 

s(v1) will be incremented. In every N decisions, all the 

counters are updated applying the following expression: 

 s(v) = r(v) + s(v)/2, 

where s(v) is the counter of the variable v and r(v) is the 

number of occurrences of the variable v in the conflict 

clauses since the last counters update. When a variable 

must be assigned, the solver takes the variable with the 

highest score. This process takes about 10% of the solver’s 

run-time. 

 

B. Deduce 

The function Deduce has to determine the consequences 

of the variable attribution which was decided by the 

function decide_next_branch. There are four different 

situations that can occur as a consequence of the variable 

assignment: 

 

 All the clauses are satisfied and thus a solution has 

been reached. 

 An implication has occurred, and thus, the unit 

clause rule should be applied, i.e., when one 

variable is implicated it should be assigned with 

the value that will satisfy the clause where it is 

inserted. This process, often referred to as 

Boolean Constraint Propagation (BCP), will be 

repeated until there are no more implications to 

solve.  

 A conflict clause appears and so the function 

analyze_conflict must be called.  

 There are unsatisfied clauses but there are no more 

variables (using unit clause rule) to be assigned 

and thus function decide must be called. 

Even though the behavior of the function deduce is quite 

simple, the Boolean Constraint Propagation used for all the 

solvers consumes about 90% of the run-time which means 

that the BCP is the most important component in the SAT 

solvers and it is where a very efficient algorithm is needed 

in order to obtain the least propagation time. Some 

techniques for the BCP engine will now be presented. 

BCP (Boolean Constraint Propagation) 

The BCP engine is the most important component in the 

modern SAT solvers since it consumes most of the run-

time, which led to a high attention from researchers. The 

BCP must be capable of detecting conflicts and 

implications after the variable assignment. 

In the earlier years, this engine was projected using 

counters in each clause. This method is simple and it was 

used in very well known SAT solvers like GRASP[6] or 

SATZ [21]. 

Let us see the GRASP example. The method adopted 

consists of keeping two counters in each clause: one is 

counting the literals with value ‘1’ and the other is counting 

the literals with value ‘0’. At the same time all the variables 

have two arrays, one indicating in which clauses they 

appear and the other containing their values (Negative or 

Positive). Now imagine that a variable assignment is taken, 

then all the clause counters in which the variable appears 

will be updated. The algorithm to detect if there is a 

conflict or an implication is reached is as follows: 

 If a clause counter with respect to the value ‘0’ is 

equal to the number of literals within that clause, 

then a conflict has occurred. 

 If a clause counter with respect to the value ‘0’ is 

equal to the number of literals – 1 and the clause 

counter for the value ‘1’ is zero then an 

implication has been reached. 

Even though this approach is simple, it is inefficient for 

formulas that contain a large number of clauses and literals, 

since all the counters must be periodically updated and 

enough memory resources must be allocated for all the 

counters. 

Later, in SATO[8] and in zChaff [7], methods without the 

use of counters were proposed. A more detailed description 

of these two methods is presented in the next subsections. 

1. Head/Tail List in SATO 

The method used in SATO is based on pointers. For each 

clause two pointers are kept: Tail and Head. Initially the 

Tail pointer is pointing to the first literal in the clause and 

the Head Pointer is pointing to the last literal. For each 

variable the solver maintains four linked lists: 

clause_of_pos_head(v), clause_of_neg_head(v), 

clause_of_pos_tail(v) and clause_of_neg_tail(v). These 

lists keep the pointers to the clauses in which the variable v 
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is on the tail or on the head and its phase (Negative or 

Positive). Now imagine that the variable v is assigned to 

value ‘0’ - then the lists clause_of_neg_head(v) and 

clause_of_neg_tail(v) will be ignored since the clauses to 

which they point will now be satisfied. On the other hand, 

for each clause pointed by the clause_of_pos_head(v) and 

clause_of_pos_tail(v), the tail or the head will be moved to 

the next literal that is not assigned yet. In respect to the 

search process the following situations may occur: 

 If a literal within a clause takes the value ‘1’ the 

clause will be satisfied and then both clause 

pointers will not change; 

 If a literal l is free and the tail pointer is not 

pointing to a free literal then the tail must be 

pointed to the literal l. This operation is called as 

moving a literal to the tail; 

 If all the literals between the tail and the head are 

assigned to the value ‘0’ and the tail is pointing to 

a free literal then an implication has reached; 

 If the literal pointed by the tail has the value ‘0’, 

as well as all the literals between the tail and the 

head, then a conflict has occurred. 

 

This method is more efficient than a method based on 

counters since when a literal gets the value ‘1’ it is not 

needed to visit the clauses where it occurs. The lesser 

computation effort of using pointers instead of counters is 

also a point in favor. Despite of these advantages, this 

method still has one great problem since when a 

backtracking is performed all the pointers must be 

backtracked as well. This leads to a huge effort by the 

computation system since it has to change all the pointers 

in all the clauses where the variables to be backtracked do 

occur.  

2. Watched variables 

In zChaff [7] the authors proposed a new method referred 

as to 2-watched variables. This is similar to the previous 

implementation in such way that both methods use two 

literals to find either if a conflict has occurred or a variable 

is implied. This scheme uses two lists for each variable: 

pos_watched(v) and neg_watched(v) which contain the 

clauses were the variable v is a watched variable and its 

phase. Another feature is that the pointers within the clause 

do not have to be ordered and so initially there is no 

preference for the literals that must be watched. 

Assume now that the logic value ‘1’ was assigned to the 

variable v. In this case, the solver will search in the 

neg_watched(v) list for a literal l (within the same clause as 

the literal with the variable v) which is not set to the logic 

value ‘0’, i.e., either not assigned or assigned to value ‘1’. 

As a consequence of this search process the following 

situations may take place: 

 If the literal l exists and is not the other watched 

literal, then the pointer to the last assigned literal 

will be pointed to the literal l; 

 If the literal l is the one who is pointed to by the 

second pointer and whether it is free (not 

assigned) then an implication was found, and as a 

consequence the unit clause rule must be applied; 

 If the literal l is the other watched literal and its 

value is assigned to ‘1’ then there is no operation 

to be performed since the clause is satisfied; 

 If the literal l does not exist then a conflict has 

occurred; 

 

The 2 watched-variables method has the same advantages 

provided by Head/Tail in SATO comparing with the clause 

counters method. However, this method provides a great 

advantage in terms of the consumed time when a 

backtracking process is needed in which the undo process 

takes a constant time. This characteristic is achieved since 

when a backtracking is performed the two watched 

variables are still the same as when the conflict has 

occurred. This is true because the last watched variables 

always have the zero value assigned and thus when the 

process of unassignment takes place, these will be 

unassigned or assigned to the value ‘1’, and, as a 

consequence, the pointers should not have to change saving 

time resources. 

 

C. Conflict Analysis and Learning 

As mentioned in the DPLL algorithm’s overview, this 

engine (function) is responsible for the conflict analysis, 

finding a solution, promoting the next step to be followed 

and learning with conflicts in order to prune search space in 

the future. 

In this section the basic definitions will be presented 

instead of a deeper analysis. This is because the future 

work will not be focused around this area. 

In the original DPLL algorithm, a simple strategy was 

performed. Here, all variables have a flag which indicates 

if the variable was already tried in the both phases 

(Negative and Positive). Thus, when a clause conflict 

occurs, the solver tests if the last variable was already tried 

in both phases. If not, the remaining phase is assigned and 

the result of that operation will then be propagated. In case 

that the last assigned variable was already tested in both 

phases a chronological backtracking is performed, i.e., 

the solver always undoes the last decision and tries another 

variable. Even though this is a simple scheme it only works 

well for random instances [17]. It was successfully 

employed in very well known SAT solvers such as SATZ 

[21]. 

For real world applications, chronological backtracking is 

not the most efficient method. Instead of just undoing the 

last assignment, a more complex technique was developed 

in order to detect the reason of such conflict and thus 

backtracking to an earlier level of decision, saving 

computational system run-time. This technique is referred 
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to as non-chronological backtracking. The basic concept 

of this approach is to get information about the conflict and 

thus learn (conflict-directed learning), adding redundant 

clauses to the original formula. These redundant clauses do 

not change the Satisfiability of the original instance but 

they can prune search space in the future. GRASP[6], 

zChaff[7] and SATO[8] are examples where this approach 

was employed and in which good results have been 

achieved. Such learned clauses are often referred to as 

conflict clauses and the clauses that generate the conflicts 

are referred to as conflicting clauses. 

IV. HARDWARE ACCELERATORS 

Nowadays, due to the physical limitations and the clock 

frequency reaching its limit, the development of dedicated 

systems i.e., systems which have an optimized structure for 

a particular task became crucial in order to get higher 

performance and lower power. This is achieved by using a 

customized multi-core system, which means that the 

system has more than one specialized processing element. 

Another feature of such systems in order to achieve faster 

information transfer is the personalized on-chip 

intercommunication which is an important element.  

Due to the high cost of the customized ASICs, FPGAs 

based design has become a com only used part of the 

complex systems. It allows the engineer or the researcher to 

design its own customized SoC (System on Chip) through 

the building of specialized low cost processing elements 

within the imposed time limit. With such advantages, the 

employment of the reconfigurable systems in order to solve 

the SAT problem brings no surprise. 

In this paper, the SW/HW solution will be emphasized 

since future work will be done using this approach. This is 

because using both a personal computer (SW) and a highly 

customized system (HW) allows us to get higher speeds in 

sequential tasks (i.e., tasks that do not need a huge amount 

of memory access and parallelism) using the personal 

computer and to employ a customized system in order to 

have a more efficient execution of the highly parallelized 

hard tasks. Further details about well known fully HW and 

SW/HW implementations can be found in [22]. 

 

 

 

A. Dandalis et al. 

 

In [23], a dynamical parallel system was proposed for 

solving implications during DPLL’s deduction phase. In 

this system all the clauses are divided in p parallel groups 

(multi-core system) allowing implications to be found 

independently in each group and then propagated for the 

next clauses in the same group’s chain and later to the other 

groups. An example with three groups is shown in Fig. 1 – 

Hardware Accelerator in [23].  

 

Merge
System

Merge
System

Register

Processing Element

p groups

Communication
Interface

 

Fig. 1 – Hardware Accelerator in [23] 

This system receives a variable that was assigned by the 

DPLL’s decision heuristics in the host computer, and then 

it will enter in each group. It will then pass through each 

group chain which is composed of processing elements in 

order to find implications. Subsequently, a merging process 

will receive information from each group and, as a 

consequence, it will decide which will be the next variable 

to be assigned, repeating this process until no more 

variables are implicated. Finished this process, all the 

assignments information made in the dedicated system will 

be transmitted to the host computer. In case that the 

merging system detects a conflict, all the attribution 

process will stop and backtracking will then be performed 

by the host computer. All processing elements’ memories 

that contain clause information are updated by a partial 

reconfiguration process. 

 

This system is based on the FPGA partial reconfiguration 

feature. During the deduction process it will change the 

number of groups p trying to find the best template for the 

current variable assignment. However, issues like clauses 

order within the groups and their distribution in the groups 

were not mentioned. The contribution of this architecture 

was the attempt to find the best template for a particular 

instance. The system was simulated but not tested in real 

reconfigurable platforms, so important aspects like 

occupied resources, maximum frequency, number of partial 

reconfigurations and time to solve some benchmarks are 

not given and thus conclusions cannot be taken. 

 

B. Skliarova and Ferrari et al. 

In [24], the authors proposed mapping the SAT problem 

to a ternary matrix with the rows corresponding to clauses 

and columns representing the variables. The approach 

adopted consists in finding a vector, v, which is orthogonal 

to all matrix rows. Thus, if the vector v exists then the 

satisfiability condition was reached and each vector 

element gives the value to be assigned to the correspondent 

variable. Otherwise, the instance is impossible to be 

satisfied. The proposed architecture is shown in Fig. : 
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 Control Unit – Processing element which 

manages the execution; 

 Stack – Memory used to store variables’ 

assignments in order to support backtracking 

operations.  

 Matrices – Four memory blocks for storing 

the initial matrices and their transpose. 

Since, ternary matrix cannot be synthesized, 

an approach of using two binary matrices 

was employed (one indicating the position of 

ones and the other storing the positions of 

zeros). 

 Registers – Keep rows and columns that 

were deleted. Registers values are stored in 

the stack when an assignment is made and 

loaded if a backtracking is needed. 

 ALU – Performs some operations such as 

counting the number of ones/zeros in a 

row/column, etc. 

 

Matrices
Memory

Registers

Arithmetic
Unit

Stack

Control
Unit

PCI interface

 

Fig. 2 - Hardware Accelerator in [24] 

To this basic structure, an improvement was employed 

[24-25]. In the latter a hybrid algorithm using a favorites 

list containing some restrictions on the variables 

assignments was implemented. The solver uses this feature 

in the search process and when variables assignments are 

not consistent with the restrictions within the favourites 

list, a premature backtracking is performed.  

In this system, the HW/SW partition is quite different 

from the last example and it is implemented as follows: 

1. The problem is implemented by a software 

application in C++ and then the SAT solver 

is configured into the FPGA; 

2. If the FPGA’s memories have enough 

capacity to accommodate the initial matrices 

then matrix data will be transferred to the 

FPGA and all the execution will be done by 

the customized SAT solver within the 

reconfigurable device; 

3. If not, the host computer begins to solve the 

SAT instance. At same time it keeps trying to 

fit the matrices into the FPGA. Due to the 

variable assignment process, at some point of 

the execution, that will be possible, and after 

that, all responsibility will be passed to the 

FPGA’s customized core. 

 

The entire system was implemented and tested with 

holex SAT benchmarks from DIMACS [26] and a speedup 

of two orders of magnitude compared to Grasp [6] was 

achieved for some instances. However, for some 

benchmarks it does not reach great results comparatively 

with other solvers.  

 

C. Sousa et al. 

In [27-29] a HW/SW system optimized for 3-SAT 

instances was proposed. This incorporates a conflict 

diagnosis engine, a backtracking controller and clause 

database management. The conflicts’ engine provides the 

solver the functionality to learn and as a consequence adds 

conflict clauses to the original database, pruning search 

space in future. During problem solving, computationally 

intensive tasks such as execution of logical implications, 

selection of the next decision variable and detection of 

conflicts are employed to the reconfigurable hardware, and 

soft tasks such as conflict analysis, backtracking control 

and clause database management are performed by the host 

computer (software). 

The proposed system is based on an application-specific 

architecture i.e., the system does not need to be synthesized 

for each SAT formula. Another system’s feature is that it is 

based on a virtual hardware scheme with context switching. 

This allows it to accommodate a larger number of clauses with 

the aid of configuration pages stored in the on-board memory 

in which each configuration page stores a clause pipeline. 

The variables’ information is stored in two memory blocks 

and it is read sequentially from one memory block, then being 

processed in the clause pipeline and stored in the other 

memory block. After storing the variables’ information in the 

second memory the next page will be loaded into the clause 

pipeline and the variables’ information is written back to the 

first memory. A top –level view of the system is shown in Fig. 

. For a more detailed description see [30]. 

 

Clause
Pipeline

SAT-PLD

Memory 1 Memory 2

 
Fig. 3 - Hardware Accelerator in [27-29] 

The hardware implementation results were presented in 

[29]. The system was implemented on the FPGA 

XCV2000E and four SRAM banks were used. The system 

achieved a clock frequency up to 47MHz and 

accommodated up to 7,680 variables and 214,304 clauses. 

However, the system was not tested because the 
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communication between the host computer and the FPGAs 

has not been implemented. Thus, some practical results 

were not achieved and only simulated results are presented.  

 

D. Davis,Tan, Yu and Zhang et al. 

In [31] a new approach for developing HW/SW Sat 

solvers was proposed relying on BlockRAMs available 

within a FPGA in order to provide a high parallel and 

memory bandwidth. This kind of memories allows 

information to be read or written in just one clock cycle. 

The proposed design relies on a highly parallel engine 

system in order to improve the time spent in the BCP. 

Let us now analyze the proposed system (see Fig. ). 

 

Communication Module (1)

• PCI Express;
• AMD HyperTransport;
• Intel’s Front-Side Bus;

Input/Output Queue (2)

Inference
Engines

(3)

Multiplexer
(Serializer)

(4)

Conflict Detector (5)

DRAM Memory

 
Fig. 4 - Hardware Acceleator in [31] 

The system is composed of five components: 

1. CPU communication module – This module 

receives the variable assignment decisions 

and returns inference results to the host CPU. 

High speed connections as AMD 

HyperTransport, Intel’s Front-Side Bus and 

PCI Express were analyzed. In order to 

maximize the effective bandwidth the 

authors propose that communications 

between PC and FPGA should use batches 

i.e, the entire information must only be 

transmitted when the transmission buffer is 

full and then send all the information until 

the buffer is empty. 

2. Input/Output Queue – Receives either the 

variable chose by the host computer to be 

assigned or an implication that must be 

propagated. This module also sends 

information about the variables implied to 

the host PC and announces if there is a 

conflict. 

3. Parallel Inference Engines – After a pre-

processing process, the clauses that compose 

the instance are partitioned and distributed 

by the parallel inference engines. The 

partition is made following the rule that one 

variable can only appear once in a parallel 

engine. Thus, when a variable is assigned, a 

parallel evaluation can be performed 

allowing to detect if an implication has 

occurred. Another feature of this module is 

the clause search process. The latter receives 

a variable and a corresponding value to be 

assigned and searches in a binary tree which 

is the clause where this variable occurs. The 

inference engine structure is shown in Fig. . 

 

Tree Walk
Table

Clause
Status 
Table

Implied Variable
(Index and Value)

Variable Index
and Value

 
Fig. 5 - Inference Engine in [31] 

Observing Fig. , two memories can be seen: 

the Tree Walk Table and the Clause status 

Table. The first, implements the search 

binary tree while the second maintains the 

SAT clauses. Then an auxiliary 

combinatorial circuit tests if an implication 

was reached giving in this case to the next 

component (Multiplexer) the index and the 

value of the implied variable. 

For a more detailed description see [31]. 

4. Multiplexer(Serializer) – This module 

receives all the information that comes from 

the parallel inference engines and serializes 

it. It uses a 2-level priority-encoder and can 

be attached to up to 256 inference engines. 

5. Conflict Inference Detection – This module 

receives the serialized information and 

detects clauses’ conflicts. Given a new 

implication from the inference engines, it 

detects if there is a conflict and tests if the 

same implication was already produced by a 

different clause. If a conflict is detected, then 

the system will notify the host computer and 

both backtracking and a learning process will 

be invoked. The DRAM memory is used to 

translate the local index of the implied 

variable to its global variable and clause ID. 

About the implementation results, the authors only present 

some tests to the communication module and some 

synthesis results. However, a careful analysis shows that 

the targeted FPGA does not allow such number of variables 

and clauses to be supported (216 variables and 216 clauses 

were reported). In relation to the search process, it is only 

efficient when we are treating instances with a few number 

of clauses and variables. When all the memories are full a 

more efficient implementation is directly mapping the 

clause without any search process. Another problem in this 
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system is that it cannot efficiently take advantage of the 

DDR memory burst accesses since in order to detect a 

conflict or detect which are the implicated variables, a non-

continuous memory access must be performed. 

V. CONCLUSION 

This paper is dedicated to the description and analysis of 

the state of the art techniques and implementations of SAT 

solvers. It presents the basic template for complete SAT 

solvers as well as a detailed description of some techniques 

concerned to this template. Since the use of reconfigurable 

systems and HW/SW approach is a widely adopted 

method, some of the implementations that take advantage 

of this scheme are also presented and a brief analysis is 

done. We can also conclude that future developments for 

solving SAT problem should take advantage of the new 

FPGAs capabilities such as BRAMs, allowing the clauses 

to be partitioned and accessed in parallel. Despite of these 

new features, the biggest challenge in order to improve the 

SAT performance is to determine the best processing 

elements’ architecture, the best clause search process and 

backtracking parallelization.   
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