
218 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010

Abstract— This paper presents an overview of the most

common techniques employed for solving the SAT problem.

Such techniques have allowed the SAT solvers to be reliable

enough in order to solve both random and practical instances.

Another point focused in this paper is the applicability of

Reconfigurable Systems in order to accelerate the SAT

solving process. An emphasis to HW/SW based solutions will

be done and an analysis of those systems will be done. This

solution is widely used today, allowing a system to take

advantage from both the high speed personal computer and,

at the same time, parallelism and flexibility provided by

reconfigurable systems.

Index Terms – Boolean Satisfiability, Hardware/Software

partitioning, Reconfigurable Systems, Application Specific

Processors.

I. INTRODUCTION

The Boolean Satisfiability (SAT) is a very well known

NP-complete problem, which has been studied in a deeper

way since 60’s. Given a propositional or Boolean formula,

the problem consists of determining if there is any

variables’ assignment that produces a given formula to be

satisfied. Therefore, some operations and decisions must

be performed attempting either to find a solution for a

given instance or to detect that there is no solution. The

entity that commands all the operations needed is referred

to as SAT Solver.

In the last decades, these solvers have begun to be

intensively used in industrial applications, which has

construct a faster solver as well as to increase the variable

number that can be processed. SAT solvers are used in the

electronic design automation (EDA) industry for a variety

of tasks, including microprocessor verification [1], AI

planning [2], automatic test pattern generation for circuits

[3], cryptanalysis [4], verification and testing of digital

systems [5] among others.

The SAT solvers can be separated in two categories:

Complete or Systematic and Incomplete Solvers. The

first are characterized by the use of an algorithm which

always produces a result, i.e. either gives a possible

assignment of variables for a formula or proves that

formula is unsatisfiable (e.g.: Grasp [6] zChaff [7],

SATO[8], BerkMin[9], MiniSat [10], etc.). Alternatively,

Incomplete Solvers cannot ensure that an assignment of

variables is reached, even if it exists, or prove that a

formula cannot be satisfied, and they usually have a pre-set

time to solve the instance (e.g. GSAT[11], WalkSAT[12]).

.

The latter are based on Local Search instead of the

Backtracking or Branching techniques used by complete

solvers.

About the Solver’s implementations, along the latest years

different approaches were seen for developing such

systems. From SW, to SW/HW and only HW solutions,

different methods have been proposed.

In this paper, some of the most commonly used

techniques are presented. Since most of the future work

will be done using a SW/HW approach, some of the

implementations using that approach are presented, namely

using reconfigurable hardware (e.g. FPGAs, CPLDs).

The remainder of the paper is organized in four sections.

Section II provides some of the basic concepts such as

problem’s representation and some definitions essential to

understand the SAT problem. Since most of the

implementations employ a complete SAT solver, in Section

III the basic template for all the complete solvers is

presented, as well as a deep analysis of the most successful

techniques concerned to this basic template. Section IV

discusses some SW/HW implementations that take

advantages from this partitioning, i.e., implementations that

employ solving tasks in both SW and HW and not only

some preprocessing before the solving procedure. Finally,

concluding remarks are given in section V.

II. PROBLEM’S REPRESENTATION

A Boolean formula consists in a logic expression which

depending on the variables values (TRUE or FALSE) can

produce either a true (Satisfiable) or a false (unsatisfiable)

result. The most common representations are: CNF

(conjunctive normal form) or DNF (Disjunctive normal

form). In the first case the formula is represented using

products of sums instead of sums of products (which is the

DNF representation).

For a better comprehension in the next sections, some of

the basic definitions will be now present. Let us consider

the following Boolean formula in CNF representation with

four variables (X1, X2, X3, X4).

Boolean Satisfiability Solvers: Techniques, Implementations and Analysis

João F. Lima

http://en.wikipedia.org/wiki/Disjunctive_normal_form
http://en.wikipedia.org/wiki/Disjunctive_normal_form

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 219

As noticed in the example above, a Boolean formula is

composed of clauses and each element within it is referred

to as a literal. A clause that only has one element is

designated a unit clause. In some applications the formula

may have a fixed number of literals, k, in each clause. In

this case the problem is called k-Sat with k N and k ≥ 2.

Since all techniques and implementations are based in the

CNF representation, it will be used in the next sections.

III. DPLL

Researchers have begun to take interest in the SAT

problem long decades ago. Since that time, a large number

of techniques and implementations were proposed trying to

overcome some technical problems such as: memory

explosion, resolution speed, number of variables, number

of clauses, etc. However, even though great advances were

reached, the basic template for most of the SAT solvers is

still almost the same. The first template was proposed in

1960 and is referred as DP algorithm [13]. This algorithm

is affected by memory explosion problem. In order to solve

this problem, an improvement was proposed in 1962 by M.

Davis, G. Logemann, and D. Loveland [14] which was

accepted as a basic template for the complete SAT solvers.

This is referred to as DPLL algorithm. A pseudo-code of

this algorithm is the following:

status = preprocess();

if (status!=UNKNOWN) return status;

while(1) {

decide_next_branch();

while (true) {

 status = deduce();

 if (status == CONFLICT) {

 blevel = analyze_conflict();

 if (blevel == 0) return UNSATISFIABLE;

 else backtrack(blevel);

 }

 else if (status == SATISFIABLE)

 return SATISFIABLE;

 else break;

 }

DPLL algorithm is based on the Branch and Search

philosophy, i.e., the algorithm follows a determinate branch

trying to find out one solution. In case that it is impossible

to find it by the chosen branch, the algorithm does some

kind of backtracking process and restarts by following

another branch, repeating this until some solution is

reached or, in the worst case, finds that there is no possible

solution for that particular instance.

Let us now present an overview of the DPLL algorithm.

Further details about each function will be given in later

sections.

The algorithm initiates with all the variables unassigned.

At this point the function preprocess is called. Within it,

some processing will be done on the instance in order to

get a more efficient representation due to some variations

on this function’s algorithm. In a later section, an example

of preprocessing will be given. When all the preprocessing

is done the construction of the solution begins. This process

will start with the function decide_next_branch. The latter

determines, through some specific algorithm, which will be

the next variable to be assigned. This decision is then

propagated, i.e., when a variable is chosen, that decision

will simplify the problem, and as a consequence some

variables should be assigned with a specific value

(implication) in order to satisfy some clause. We refer this

process as deduce. For example: Imagine that the variable

 is assigned to value ‘0’ then the 2nd clause only have one

more literal to be assigned . Thus the variable is

implied because it must be assign to value ‘1’ in order to

satisfy the 2nd clause.

When all the implications are solved, the algorithm needs

to test if those attributions inferred some conflict, i.e., if

there is any variable that must be assigned to both value

TRUE in one clause and value FALSE in another clause. If

it happens, backtracking will be done by the function

analyze_conflict. Another task employed by this function

(in the more recent solvers) is to take some information

about the conflict and learning with it (conflict-driven

learning) in order to prune search space in the future.

Then, the output variable blevel is tested. If it reaches zero

value it means that there is no more possible backtracking

and so the instance is impossible to solve. In the other case,

if there is no conflict, the solver will test if the satisfiable

condition was reached. If it is TRUE all the process will be

finished. If not, all the cycle explained above will be

repeated until either the satisfiable condition is reached or

it has been proved that the instance is impossible to be

satisfied.

Now that we have a general idea of the presented

functions, let us analyze each function more deeply.

A. Decide Next Branch (Branch Heuristics) or Decision

Heuristics

Decide Next Branch (or Decision Heuristics) will choose

the next variable to be assigned. The concept is easy to

understand, however a very important issue will appear

immediately: ‘which variable should be assigned next?’.

The importance of choosing the right variable is a very well

known problem and different procedures will lead to

different search trees as well as different memory

consumptions, solving time, etc.

In the earlier years, the proposed algorithms tried to

satisfy the largest number of clauses at once or infuse the

largest number of implications. In [15] and [16] such

techniques have been applied and tested. These are based

on statistics, which is useful when we are dealing with

random SAT instances, but in structured problems they do

not get relevant information, making this approach

inefficient for those instances [17]. An alternative to this

method was first presented in [18] when the author

proposed the use of literal count heuristics i.e., the

220 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010

algorithm counts in each phase of the solving process the

number of the unsatisfied clauses in which a certain

variable appears. It was proved that if we choose the

variable to be assigned as the variable with the dynamic

largest combined sum (DLIS), we can get satisfactory

results. It must be noticed that with this technique the

counters are state-dependent, which means that each time

the function decide_next_branch is invoked, all the

counters must be updated in order to determine the variable

with DLIS. Another approach similar to DLIS is the

VSIDS which was introduced in [7], nowadays being a

reference. Thus, it will now be explained in more detail.

Schemes which derivate from VSIDS - like BerkMin [9],

MiniSat[10], Jerusat[19] and RSat [20] - will not be

discussed in this paper.

VSIDS - VARIABLE STATE INDEPENDENT DECAYING SUM

In this scheme a variable is chosen by its weight (one

counter per variable) being periodically decayed or boosted

when it appears in a conflict clause (redundant clause

added to the original formula due to a learning process)

Initially all the counters, s(v),v=1..Number of variables,

have their own number of occurrences in the Boolean

Formula. When a conflict clause with variable v1 is added,

s(v1) will be incremented. In every N decisions, all the

counters are updated applying the following expression:

 s(v) = r(v) + s(v)/2,

where s(v) is the counter of the variable v and r(v) is the

number of occurrences of the variable v in the conflict

clauses since the last counters update. When a variable

must be assigned, the solver takes the variable with the

highest score. This process takes about 10% of the solver’s

run-time.

B. Deduce

The function Deduce has to determine the consequences

of the variable attribution which was decided by the

function decide_next_branch. There are four different

situations that can occur as a consequence of the variable

assignment:

 All the clauses are satisfied and thus a solution has

been reached.

 An implication has occurred, and thus, the unit

clause rule should be applied, i.e., when one

variable is implicated it should be assigned with

the value that will satisfy the clause where it is

inserted. This process, often referred to as

Boolean Constraint Propagation (BCP), will be

repeated until there are no more implications to

solve.

 A conflict clause appears and so the function

analyze_conflict must be called.

 There are unsatisfied clauses but there are no more

variables (using unit clause rule) to be assigned

and thus function decide must be called.

Even though the behavior of the function deduce is quite

simple, the Boolean Constraint Propagation used for all the

solvers consumes about 90% of the run-time which means

that the BCP is the most important component in the SAT

solvers and it is where a very efficient algorithm is needed

in order to obtain the least propagation time. Some

techniques for the BCP engine will now be presented.

BCP (Boolean Constraint Propagation)

The BCP engine is the most important component in the

modern SAT solvers since it consumes most of the run-

time, which led to a high attention from researchers. The

BCP must be capable of detecting conflicts and

implications after the variable assignment.

In the earlier years, this engine was projected using

counters in each clause. This method is simple and it was

used in very well known SAT solvers like GRASP[6] or

SATZ [21].

Let us see the GRASP example. The method adopted

consists of keeping two counters in each clause: one is

counting the literals with value ‘1’ and the other is counting

the literals with value ‘0’. At the same time all the variables

have two arrays, one indicating in which clauses they

appear and the other containing their values (Negative or

Positive). Now imagine that a variable assignment is taken,

then all the clause counters in which the variable appears

will be updated. The algorithm to detect if there is a

conflict or an implication is reached is as follows:

 If a clause counter with respect to the value ‘0’ is

equal to the number of literals within that clause,

then a conflict has occurred.

 If a clause counter with respect to the value ‘0’ is

equal to the number of literals – 1 and the clause

counter for the value ‘1’ is zero then an

implication has been reached.

Even though this approach is simple, it is inefficient for

formulas that contain a large number of clauses and literals,

since all the counters must be periodically updated and

enough memory resources must be allocated for all the

counters.

Later, in SATO[8] and in zChaff [7], methods without the

use of counters were proposed. A more detailed description

of these two methods is presented in the next subsections.

1. Head/Tail List in SATO

The method used in SATO is based on pointers. For each

clause two pointers are kept: Tail and Head. Initially the

Tail pointer is pointing to the first literal in the clause and

the Head Pointer is pointing to the last literal. For each

variable the solver maintains four linked lists:

clause_of_pos_head(v), clause_of_neg_head(v),

clause_of_pos_tail(v) and clause_of_neg_tail(v). These

lists keep the pointers to the clauses in which the variable v

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 221

is on the tail or on the head and its phase (Negative or

Positive). Now imagine that the variable v is assigned to

value ‘0’ - then the lists clause_of_neg_head(v) and

clause_of_neg_tail(v) will be ignored since the clauses to

which they point will now be satisfied. On the other hand,

for each clause pointed by the clause_of_pos_head(v) and

clause_of_pos_tail(v), the tail or the head will be moved to

the next literal that is not assigned yet. In respect to the

search process the following situations may occur:

 If a literal within a clause takes the value ‘1’ the

clause will be satisfied and then both clause

pointers will not change;

 If a literal l is free and the tail pointer is not

pointing to a free literal then the tail must be

pointed to the literal l. This operation is called as

moving a literal to the tail;

 If all the literals between the tail and the head are

assigned to the value ‘0’ and the tail is pointing to

a free literal then an implication has reached;

 If the literal pointed by the tail has the value ‘0’,

as well as all the literals between the tail and the

head, then a conflict has occurred.

This method is more efficient than a method based on

counters since when a literal gets the value ‘1’ it is not

needed to visit the clauses where it occurs. The lesser

computation effort of using pointers instead of counters is

also a point in favor. Despite of these advantages, this

method still has one great problem since when a

backtracking is performed all the pointers must be

backtracked as well. This leads to a huge effort by the

computation system since it has to change all the pointers

in all the clauses where the variables to be backtracked do

occur.

2. Watched variables

In zChaff [7] the authors proposed a new method referred

as to 2-watched variables. This is similar to the previous

implementation in such way that both methods use two

literals to find either if a conflict has occurred or a variable

is implied. This scheme uses two lists for each variable:

pos_watched(v) and neg_watched(v) which contain the

clauses were the variable v is a watched variable and its

phase. Another feature is that the pointers within the clause

do not have to be ordered and so initially there is no

preference for the literals that must be watched.

Assume now that the logic value ‘1’ was assigned to the

variable v. In this case, the solver will search in the

neg_watched(v) list for a literal l (within the same clause as

the literal with the variable v) which is not set to the logic

value ‘0’, i.e., either not assigned or assigned to value ‘1’.

As a consequence of this search process the following

situations may take place:

 If the literal l exists and is not the other watched

literal, then the pointer to the last assigned literal

will be pointed to the literal l;

 If the literal l is the one who is pointed to by the

second pointer and whether it is free (not

assigned) then an implication was found, and as a

consequence the unit clause rule must be applied;

 If the literal l is the other watched literal and its

value is assigned to ‘1’ then there is no operation

to be performed since the clause is satisfied;

 If the literal l does not exist then a conflict has

occurred;

The 2 watched-variables method has the same advantages

provided by Head/Tail in SATO comparing with the clause

counters method. However, this method provides a great

advantage in terms of the consumed time when a

backtracking process is needed in which the undo process

takes a constant time. This characteristic is achieved since

when a backtracking is performed the two watched

variables are still the same as when the conflict has

occurred. This is true because the last watched variables

always have the zero value assigned and thus when the

process of unassignment takes place, these will be

unassigned or assigned to the value ‘1’, and, as a

consequence, the pointers should not have to change saving

time resources.

C. Conflict Analysis and Learning

As mentioned in the DPLL algorithm’s overview, this

engine (function) is responsible for the conflict analysis,

finding a solution, promoting the next step to be followed

and learning with conflicts in order to prune search space in

the future.

In this section the basic definitions will be presented

instead of a deeper analysis. This is because the future

work will not be focused around this area.

In the original DPLL algorithm, a simple strategy was

performed. Here, all variables have a flag which indicates

if the variable was already tried in the both phases

(Negative and Positive). Thus, when a clause conflict

occurs, the solver tests if the last variable was already tried

in both phases. If not, the remaining phase is assigned and

the result of that operation will then be propagated. In case

that the last assigned variable was already tested in both

phases a chronological backtracking is performed, i.e.,

the solver always undoes the last decision and tries another

variable. Even though this is a simple scheme it only works

well for random instances [17]. It was successfully

employed in very well known SAT solvers such as SATZ

[21].

For real world applications, chronological backtracking is

not the most efficient method. Instead of just undoing the

last assignment, a more complex technique was developed

in order to detect the reason of such conflict and thus

backtracking to an earlier level of decision, saving

computational system run-time. This technique is referred

222 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010

to as non-chronological backtracking. The basic concept

of this approach is to get information about the conflict and

thus learn (conflict-directed learning), adding redundant

clauses to the original formula. These redundant clauses do

not change the Satisfiability of the original instance but

they can prune search space in the future. GRASP[6],

zChaff[7] and SATO[8] are examples where this approach

was employed and in which good results have been

achieved. Such learned clauses are often referred to as

conflict clauses and the clauses that generate the conflicts

are referred to as conflicting clauses.

IV. HARDWARE ACCELERATORS

Nowadays, due to the physical limitations and the clock

frequency reaching its limit, the development of dedicated

systems i.e., systems which have an optimized structure for

a particular task became crucial in order to get higher

performance and lower power. This is achieved by using a

customized multi-core system, which means that the

system has more than one specialized processing element.

Another feature of such systems in order to achieve faster

information transfer is the personalized on-chip

intercommunication which is an important element.

Due to the high cost of the customized ASICs, FPGAs

based design has become a com only used part of the

complex systems. It allows the engineer or the researcher to

design its own customized SoC (System on Chip) through

the building of specialized low cost processing elements

within the imposed time limit. With such advantages, the

employment of the reconfigurable systems in order to solve

the SAT problem brings no surprise.

In this paper, the SW/HW solution will be emphasized

since future work will be done using this approach. This is

because using both a personal computer (SW) and a highly

customized system (HW) allows us to get higher speeds in

sequential tasks (i.e., tasks that do not need a huge amount

of memory access and parallelism) using the personal

computer and to employ a customized system in order to

have a more efficient execution of the highly parallelized

hard tasks. Further details about well known fully HW and

SW/HW implementations can be found in [22].

A. Dandalis et al.

In [23], a dynamical parallel system was proposed for

solving implications during DPLL’s deduction phase. In

this system all the clauses are divided in p parallel groups

(multi-core system) allowing implications to be found

independently in each group and then propagated for the

next clauses in the same group’s chain and later to the other

groups. An example with three groups is shown in Fig. 1 –

Hardware Accelerator in [23].

Merge
System

Merge
System

Register

Processing Element

p groups

Communication
Interface

Fig. 1 – Hardware Accelerator in [23]

This system receives a variable that was assigned by the

DPLL’s decision heuristics in the host computer, and then

it will enter in each group. It will then pass through each

group chain which is composed of processing elements in

order to find implications. Subsequently, a merging process

will receive information from each group and, as a

consequence, it will decide which will be the next variable

to be assigned, repeating this process until no more

variables are implicated. Finished this process, all the

assignments information made in the dedicated system will

be transmitted to the host computer. In case that the

merging system detects a conflict, all the attribution

process will stop and backtracking will then be performed

by the host computer. All processing elements’ memories

that contain clause information are updated by a partial

reconfiguration process.

This system is based on the FPGA partial reconfiguration

feature. During the deduction process it will change the

number of groups p trying to find the best template for the

current variable assignment. However, issues like clauses

order within the groups and their distribution in the groups

were not mentioned. The contribution of this architecture

was the attempt to find the best template for a particular

instance. The system was simulated but not tested in real

reconfigurable platforms, so important aspects like

occupied resources, maximum frequency, number of partial

reconfigurations and time to solve some benchmarks are

not given and thus conclusions cannot be taken.

B. Skliarova and Ferrari et al.

In [24], the authors proposed mapping the SAT problem

to a ternary matrix with the rows corresponding to clauses

and columns representing the variables. The approach

adopted consists in finding a vector, v, which is orthogonal

to all matrix rows. Thus, if the vector v exists then the

satisfiability condition was reached and each vector

element gives the value to be assigned to the correspondent

variable. Otherwise, the instance is impossible to be

satisfied. The proposed architecture is shown in Fig. :

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 223

 Control Unit – Processing element which

manages the execution;

 Stack – Memory used to store variables’

assignments in order to support backtracking

operations.

 Matrices – Four memory blocks for storing

the initial matrices and their transpose.

Since, ternary matrix cannot be synthesized,

an approach of using two binary matrices

was employed (one indicating the position of

ones and the other storing the positions of

zeros).

 Registers – Keep rows and columns that

were deleted. Registers values are stored in

the stack when an assignment is made and

loaded if a backtracking is needed.

 ALU – Performs some operations such as

counting the number of ones/zeros in a

row/column, etc.

Matrices
Memory

Registers

Arithmetic
Unit

Stack

Control
Unit

PCI interface

Fig. 2 - Hardware Accelerator in [24]

To this basic structure, an improvement was employed

[24-25]. In the latter a hybrid algorithm using a favorites

list containing some restrictions on the variables

assignments was implemented. The solver uses this feature

in the search process and when variables assignments are

not consistent with the restrictions within the favourites

list, a premature backtracking is performed.

In this system, the HW/SW partition is quite different

from the last example and it is implemented as follows:

1. The problem is implemented by a software

application in C++ and then the SAT solver

is configured into the FPGA;

2. If the FPGA’s memories have enough

capacity to accommodate the initial matrices

then matrix data will be transferred to the

FPGA and all the execution will be done by

the customized SAT solver within the

reconfigurable device;

3. If not, the host computer begins to solve the

SAT instance. At same time it keeps trying to

fit the matrices into the FPGA. Due to the

variable assignment process, at some point of

the execution, that will be possible, and after

that, all responsibility will be passed to the

FPGA’s customized core.

The entire system was implemented and tested with

holex SAT benchmarks from DIMACS [26] and a speedup

of two orders of magnitude compared to Grasp [6] was

achieved for some instances. However, for some

benchmarks it does not reach great results comparatively

with other solvers.

C. Sousa et al.

In [27-29] a HW/SW system optimized for 3-SAT

instances was proposed. This incorporates a conflict

diagnosis engine, a backtracking controller and clause

database management. The conflicts’ engine provides the

solver the functionality to learn and as a consequence adds

conflict clauses to the original database, pruning search

space in future. During problem solving, computationally

intensive tasks such as execution of logical implications,

selection of the next decision variable and detection of

conflicts are employed to the reconfigurable hardware, and

soft tasks such as conflict analysis, backtracking control

and clause database management are performed by the host

computer (software).

The proposed system is based on an application-specific

architecture i.e., the system does not need to be synthesized

for each SAT formula. Another system’s feature is that it is

based on a virtual hardware scheme with context switching.

This allows it to accommodate a larger number of clauses with

the aid of configuration pages stored in the on-board memory

in which each configuration page stores a clause pipeline.

The variables’ information is stored in two memory blocks

and it is read sequentially from one memory block, then being

processed in the clause pipeline and stored in the other

memory block. After storing the variables’ information in the

second memory the next page will be loaded into the clause

pipeline and the variables’ information is written back to the

first memory. A top –level view of the system is shown in Fig.

. For a more detailed description see [30].

Clause
Pipeline

SAT-PLD

Memory 1 Memory 2

Fig. 3 - Hardware Accelerator in [27-29]

The hardware implementation results were presented in

[29]. The system was implemented on the FPGA

XCV2000E and four SRAM banks were used. The system

achieved a clock frequency up to 47MHz and

accommodated up to 7,680 variables and 214,304 clauses.

However, the system was not tested because the

224 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010

communication between the host computer and the FPGAs

has not been implemented. Thus, some practical results

were not achieved and only simulated results are presented.

D. Davis,Tan, Yu and Zhang et al.

In [31] a new approach for developing HW/SW Sat

solvers was proposed relying on BlockRAMs available

within a FPGA in order to provide a high parallel and

memory bandwidth. This kind of memories allows

information to be read or written in just one clock cycle.

The proposed design relies on a highly parallel engine

system in order to improve the time spent in the BCP.

Let us now analyze the proposed system (see Fig.).

Communication Module (1)

• PCI Express;
• AMD HyperTransport;
• Intel’s Front-Side Bus;

Input/Output Queue (2)

Inference
Engines

(3)

Multiplexer
(Serializer)

(4)

Conflict Detector (5)

DRAM Memory

Fig. 4 - Hardware Acceleator in [31]

The system is composed of five components:

1. CPU communication module – This module

receives the variable assignment decisions

and returns inference results to the host CPU.

High speed connections as AMD

HyperTransport, Intel’s Front-Side Bus and

PCI Express were analyzed. In order to

maximize the effective bandwidth the

authors propose that communications

between PC and FPGA should use batches

i.e, the entire information must only be

transmitted when the transmission buffer is

full and then send all the information until

the buffer is empty.

2. Input/Output Queue – Receives either the

variable chose by the host computer to be

assigned or an implication that must be

propagated. This module also sends

information about the variables implied to

the host PC and announces if there is a

conflict.

3. Parallel Inference Engines – After a pre-

processing process, the clauses that compose

the instance are partitioned and distributed

by the parallel inference engines. The

partition is made following the rule that one

variable can only appear once in a parallel

engine. Thus, when a variable is assigned, a

parallel evaluation can be performed

allowing to detect if an implication has

occurred. Another feature of this module is

the clause search process. The latter receives

a variable and a corresponding value to be

assigned and searches in a binary tree which

is the clause where this variable occurs. The

inference engine structure is shown in Fig. .

Tree Walk
Table

Clause
Status
Table

Implied Variable
(Index and Value)

Variable Index
and Value

Fig. 5 - Inference Engine in [31]

Observing Fig. , two memories can be seen:

the Tree Walk Table and the Clause status

Table. The first, implements the search

binary tree while the second maintains the

SAT clauses. Then an auxiliary

combinatorial circuit tests if an implication

was reached giving in this case to the next

component (Multiplexer) the index and the

value of the implied variable.

For a more detailed description see [31].

4. Multiplexer(Serializer) – This module

receives all the information that comes from

the parallel inference engines and serializes

it. It uses a 2-level priority-encoder and can

be attached to up to 256 inference engines.

5. Conflict Inference Detection – This module

receives the serialized information and

detects clauses’ conflicts. Given a new

implication from the inference engines, it

detects if there is a conflict and tests if the

same implication was already produced by a

different clause. If a conflict is detected, then

the system will notify the host computer and

both backtracking and a learning process will

be invoked. The DRAM memory is used to

translate the local index of the implied

variable to its global variable and clause ID.

About the implementation results, the authors only present

some tests to the communication module and some

synthesis results. However, a careful analysis shows that

the targeted FPGA does not allow such number of variables

and clauses to be supported (216 variables and 216 clauses

were reported). In relation to the search process, it is only

efficient when we are treating instances with a few number

of clauses and variables. When all the memories are full a

more efficient implementation is directly mapping the

clause without any search process. Another problem in this

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 225

system is that it cannot efficiently take advantage of the

DDR memory burst accesses since in order to detect a

conflict or detect which are the implicated variables, a non-

continuous memory access must be performed.

V. CONCLUSION

This paper is dedicated to the description and analysis of

the state of the art techniques and implementations of SAT

solvers. It presents the basic template for complete SAT

solvers as well as a detailed description of some techniques

concerned to this template. Since the use of reconfigurable

systems and HW/SW approach is a widely adopted

method, some of the implementations that take advantage

of this scheme are also presented and a brief analysis is

done. We can also conclude that future developments for

solving SAT problem should take advantage of the new

FPGAs capabilities such as BRAMs, allowing the clauses

to be partitioned and accessed in parallel. Despite of these

new features, the biggest challenge in order to improve the

SAT performance is to determine the best processing

elements’ architecture, the best clause search process and

backtracking parallelization.

ACKNOWLEDGMENT

The author would like to acknowledge Pr. Valery

Sklyarov and Pr. Iouliia Skliarova for their constructive

comments and help during the study.

REFERENCES

[1] M. Velev and R. Bryant, "Effective use of boolean satisfiability

procedures in the formal verification of superscalar and VLIW

microprocessors," IEEE/ACM Design Automation Conference,

2001.

[2] H. Kautz and B. Selman, "Planning as satisfiability," European

Conference on Artificial Intelligence, pp. 359–363, 1992.

[3] T. Larrabee, "Test pattern generation using Boolean satisfiability,"

IEEE Trans. Comput.-Aided Design 11, vol. 1, pp. 6–22, 1992.

[4] I. Mironov and L. Zhang, "Cryptanalysis of Hash Functions,"

Microsoft Research.

[5] A. Gupta and M. Prasad, "A survey of recent advances in sat-based

formal verification," International J. Softw. Tools Technol. Transfer

7, vol. Vol. 2, pp. 156–173, 2005.

[6] J. P. Marques-Silva and K. A. Sakallah, "GRASP – a new search

algorithm for satisfiability," ICCAD, pp. 220–227, 1996.

[7] M. W. Moskewicz, et al., "Chaff: Engineering an Efficient SAT

Solver," DAC, 2001.

[8] H. Zhang, "SATO: An efficient propositional prover," CADE, vol.

In 14th CADE, volume 1249 of LNCS, pp. 272–275, 1997.

[9] E. Goldberg and Y. Novikov, "BerkMin: A fast and robust sat-

solver," DATE, pp. 142–149, 2002.

[10] N. E´en and N. S¨orensson, "MiniSat: A SAT solver with conflict-

clause minimization," 8th SAT, 2005.

[11] B. Selman and H. J. Levesque, "A new method for solving hard

satisfiability problems," AAAI, pp. 440–446, 1992.

[12] B. Selman and H. Kautz, "Local search strategies for satisfiability

testing," DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, vol. Vol. 26, pp. 521–532, 1996.

[13] M. Davis and H. Putnam, "Computing procedure for quantification

theory," Journal of ACM, vol. 7, pp. 201-215, 1960.

[14] M. Davis, et al., "A machine program for theorem proving,"

Communications of the ACM, vol. 5, pp. 394-397, 1962.

[15] J. W. Freeman, "Improvements to Propositional Satisfiability

Search Algorithms," Ph.D Thesis, University of Pennsylvania,

1995.

[16] R. G. Jeroslow and J. Wang, "Solving propositional satisfiability

problems," Annals of Mathematics and Artificial Intelligence, vol.

1, pp. 167-187, 1990.

[17] L. Zhang and S. Malik, "The Quest for Efficient Boolean

Satisfiability Solvers," 2002.

[18] J. P. Marques-Silva, "The Impact of Branching Heuristics in

Propositional Satisfiability Algorithms," 9th Portuguese

Conference on Artificial Intelligence, 1999.

[19] A. Nadel, "The Jerusat SAT solver," Master’s thesis, Hebrew

University of Jerusalem, 2002.

[20] K. Pipatsrisawat and A. Darwiche, "RSat 1.03: SAT solver

description," Technical Report D–152, Automated Reasoning

Group, Computer Science Department,UCLA, 2006.

[21] C. M. L. Anbulagan, "Heuristics based on unit propagation for

satisfiability problems," International Joint Conference on

Artificial Intelligence, 1997.

[22] I. Skliarova and A. B. Ferrari, "Reconfigurable Hardware SAT

Solvers: A Survey of Systems," IEEE Transactions on Computers,

vol. vol. 53, pp. 1449-1461, 2004.

[23] A. Dandalis and V. K. Prasanna, "Run-Time Performance

Optimization of an FPGA-Based Deduction Engine for SAT

Solvers," ACM Trans. Design Automation of Electronic Systems,

vol. vol. 7, pp. 547-562, 2002.

[24] I. Skliarova and A. B. Ferrari, "A Software/Reconfigurable

Hardware SAT Solver," IEEE Trans. Very Large Scale Integration

(VLSI) Systems, vol. vol. 12, pp. 408-419, 2004.

[25] I. Skliarova and A. B. Ferrari, "A Hardware/Software Approach to

Accelerate Boolean Satisfiability," Proc. IEEE Design and

Diagnostics of Electronic Circuits and Systems Workshop, pp. 270-

277, 2002.

[26] "DIMACS challenge benchmarks,"

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/, 2009.

[27] J. Sousa, et al., "A Configware/Software Approach to SAT

Solving," Ninth IEEE Int. Symp. Field-Programmable Custom

Computing Machines, 2001.

[28] R. Ripado and J. Sousa, "A Simulation Tool for a Pipelined SAT

Solver," Proc. XVI Conf. Design of Circuits and Integrated

Systems, pp. 498-503, 2001.

[29] N. Reis and J. Sousa, "On Implementing a Configware/Software

SAT Solver," Proc. 10th IEEE Int’l Symp. Field-Programmable

Custom Computing Machines, pp. 282-283, 2002.

[30] J. d. Sousa, et al., "A Configware/Software Approach to SAT

Solving," Ninth IEEE Int. Symp. Field-Programmable Custom

Computing Machines, 2001.

[31] J. D. Davis, et al., "Practical Reconfigurable Hardware Accelerator

for Boolean Satisfiability Solvers," DAC 2008, 2008.

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/

