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Resumo -  O presente artigo é iniciado com a identificação do 
sistema automóvel motor/chassis, alvo do estado-da-arte das 
ferramentas de desenvolvimento e controlo apresentadas logo 
de seguida. Aqui mostra-se a necessidade inerente de 
mecanismos easy-handling que permitam conseguir-se dar 
conta da gama sempre crescente de detalhes programáticos e 
operacionais das respectivas centralinas (ECUs). Esta 
complexidade surge, em grande parte, devido à elevada 
opacidade do caminho entre a interface do utilizador e a 
plataforma de hardware. Finalmente, são feitas algumas 
considerações sobre melhoramentos que potencialmente 
alteram significativamente o modo de programar, prototipar, 
simular, depurar e verificar sistemas automóveis. No final são 
ainda apresentados alguns detalhes elucidativos destas 
melhorias, a partir dum projecto a decorrer e baseado num 
"clean-slate approach". É mostrado que encurtando 
drasticamente o caminho entre interface e hardware, surgem 
possibilidades interessantes como o "Live-Prototype" que se 
resume a uma espécie de Programação 100% Interactiva. O 
paper [1] é uma excelente introdução para se compreender 
melhor as preocupações aqui apresentadas. 
 
Abstract - This paper starts by identifying the automotive 

engine/chassis system, which is the target of the 
state-of-the-art development and control tools presented right 
after. The underlying need for easy-handling mechanisms to 
harness the overwhelming and ever-growing range of 
programming and operational details of the corresponding 
electronic control units (ECUs), is addressed. This complexity 
is mainly caused by the highly opaque path between the 
user-interface and the hardware platform. Finally, some 
considerations on enhancements are made, which potentially 
provide significant changes in the way automotive systems are 
programmed, prototyped, simulated, debugged and verified. 
At the end, some elucidative details of an ongoing "clean-slate 
approach" project are disclosed. It is shown that by 
shortening the path between interface and hardware, 
interesting possibilities arise, such as "Live-prototyping", 
which is a sort of 100% Interactive Programming. The paper 
[1] is an excellent introductory reading to better understand 
the herein presented worries and considerations. 

 

I. INTRODUCTION 

Current automotive control and development systems used 
in the most renowned car and also in the car-component 

manufacturers are complex systems which still use classical 
imperative textual programming techniques and standard 
handling methods. The corresponding tools, although being 
state-of-the-art themselves, center upon historically 
layered-grown complex software tool-chains and on 
correspondingly inflexible hardware platforms. Very 
sophisticated visual tools have been emerging, which allow 
to optimize development efforts [2] [3] at the top-most 
automotive control-functionalities design. But these 
systems still rely, at some internal level or layer of their 
assembly, on classical mechanisms such as compilers and 
assemblers. These lower tools in turn use standard textual 
imperative languages such as mainly "C" for building 
machine-code for downloading onto standard and rigid 
micro-controller based hardware. Although the top-most 
interfaces are now visual, even state-of-the-art tools still 
generate "C" code for use by lower-level components [4].  
Most of the engine/chassis management functionalities 

rely on standard signal-processing and data-flow methods. 
Modern automotive and industry-related software tools take 
advantage of that fact and concentrate on visual data-flow 
programming paradigms [5] [7] [8] [11], therefore avoiding 
the hassle of classical low-level textual control-flow 
programming at top-level. Even standard tools which use of 
control-flow programming at user-interface level use 
internal data-flow mechanisms such as time-raster calls 
with well-defined data-oriented execution sequences, fully 
mimicking this data-flow centered nature.  
All of the hardware systems rely on a closed control-loop 

comprising the electronic control unit (ECU) itself, which 
contains the control-algorithms (software), and finally the 
plant to be controlled (vehicle). Control- and sensor-signals 
represent the data-flow between the ECU and the car 
components (Fig. 1). Unfortunately, the hardware solutions 
did not follow the automotive data-flow nature as closely as 
the visual tools did. In fact, they still strongly reflect 
control-flow structures, therefore producing some very 
severe conceptual mismatch between software and 
hardware, thereby forcing visual tools to produce 
control-flow classical "C" code under their hood. 
 

 
Fig. 1 - ECU and car closed-loop control with in/out signals 
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This paper will essentially addresses software 
development tools used both in series-car and motorsport 
areas, especially the complexity that arises from the 
conceptual mismatch between development user-interfaces 
and the corresponding hardware target platforms. This 
complexity is thus essentially generated by the need of the 
new visual tools still having to generate classical code to be 
used in still classical hardware platforms. 

II.  STATE-OF-THE-ART 

A. Development software tools 

Current software development tools are proprietarily built 
or made out of commercial tools, inside car and 
car-components manufacturers. While user-interfaces are 
now more visual and better suited for the data-flow nature 
of automotive functionalities, highly complex layers are 
still hidden under the hoods of those tools. Historically 
evolved through adding new visual interface layers on top 
of the already existing classical layer stack, these huge, 
very complex, and expensive software packages, are 
illustrated through these state-of-the-art examples: 

 

1) ASCET: short for "Advanced Simulation and Control 
Engineering Tool", developed at ETAS [11] since 
1997. This tool displays a graphical interface (Fig. 2) 
which allows to visually edit/design automotive 
functionalities called FDEFs (Function-DEFinitions). 
Interestingly enough, it combines representations of 
both data- and control-flows into a single visual 
language based on graphical processing elements, 
while having the capacity of displaying both flows 
simultaneously on the same screen view [13]. This tool 
is used for series-cars prototyping and development, 
while also being applied to Motorsport [14] projects.  

 

2) MATLAB Simulink: short for "MATrix LABoratory" 
and "Simulation and Link", developed at Mathworks 
[7] since 1984. Very similar to ASCET in terms of the 
graphical interface and internal mechanisms, it also 
allows designing automotive functionalities through the 
special data-flow tool-box Simulink (Fig. 3). Although 
not specifically designed for the automotive scene as 
the ASCET tool is, it is without doubt the most used 
and mentioned tool package in the automotive and 
non-automotive industries, papers and general 
research. This tool is being applied on most recent 
motorsport ECUs as in [15] [16] with a combination of 
micro-controller plus FPGA-based hardware. 

 

3) LabVIEW: short for "Laboratory Virtual 
Instrumentation Engineering Workbench", developed 
at National Instruments [8] since 1986. With evident 
similarities to MATLAB Simulink and ASCET (Fig. 4), 
it is mainly used for industrial and laboratorial 
applications, data acquisition and instruments control. 
It also allows processing on both micro-controller and 
FPGA-based hardware platforms. 

 

Integrated auto-code generators produce classical "C" 
code usable on classical hardware, with the particularity of 
Matlab and LabVIEW being able to also target FPGA 
platforms. These additionally "sandwiched" auto-code 
generators [12] build the necessary interface between the 
graphical elements and the underlying "C"-code specialized 
classical tool-chains (left of Fig. 5). Corresponding 
centralized hardware platforms (right of Fig. 5) close this 
type of packages. This tool combination leads to most of 
the limitations and pitfalls in these highly complex systems.  
 

 
Fig. 2 - ASCET automotive-specific visual development tool. 

 
Fig. 3 - MATLAB Simulink general-purpose visual development tool. 

 
Fig. 4 - LabVIEW's general-purpose visual development tool. 

     
Fig. 5 - Matlab tool-chain and series-car EDC17 ECU internal structure. 
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In contrast to legacy but still used "C"/Assembly-only 
tools (Fig. 6) the visual counterparts are often referred to as 
"Rapid" or "Fast-Prototyping" tools, mainly because of the 
relative ease and speed those visual programming methods 
allow for users to make changes. Changes are simple visual 
manipulations, while underlying auto-code generators do 
the heavy work automatically. Delays between changes and 
hardware response depend on the extent of the changes and 
typically range from half a minute to a few minutes [15]. 
These tools are thus limited by minimum operating 
turn-around delays, imposed by their internal structure. 

 

    
Fig. 6 - Example of a legacy ECU development software tool-chain. 

Although iconic visual handling has to be learned [32] 
[33], its commercial success states its usefulness from the 
users' point-of-view, for programming complex equipment 
including automotive ECUs. The ability of visually 
conveying intuitive information is an advantage. It is also 
being applied to robotic equipment, with self-explaining 
and highly intuitive icons and programming environments 
[34] [35], also including script-like programming abilities. 

 

B. Hardware target platforms 

Besides proprietary hardware made directly inside the car 
or car-components manufacturers, several commercial 
platforms are also available. Special micro-controllers 
contain dedicated I/O peripherals, besides other 
mechanisms to accelerate basic routines for injection- and 
ignition-outputting. FPGAs are also starting to invade 
special highly flexible prototyping hardware. Some 
currently used hardware platforms are the following: 

 

1) Micro-Controllers: special micro-controller families 
such as the C167 and the TriCore were developed by 
Infineon-Siemens [17] for automotive ECUs. Other 
automotive micro-controllers are the MC and MPC 
families from Motorola [18]. Although hard to 
program, debug and maintain, the vast majority of 
series-car ECUs use these "turbo-charged" 
feature-packed micro-controllers as their processing 
units. Their commercial success has mainly to do with 
mass-production cost-optimization, by selling the same 
costly and complex software millions-fold. 

 

2) FPGAs: motorsport ECUs and specialized prototyping 
hardware tend to use concepts which allow developers 
to more quickly and efficiently respond to customer 
requests. Thus, platforms have been advancing into 

"programmable hardware" since the early 2000's, with 
Magneti-Marelli's "FastPRO", Bosch's "MS5" and 
dSpace's "RapidPro". These combine MATLAB 
Simulink, auto-code generation and standard "C" [6] 
[14] [16], exception made to National Instruments' 
FPGAs modules using LabVIEW [9].  

 

Although FPGAs have made hardware more flexible, 
problems with overwhelming software tools needed to 
program/configure them continues to be a major pitfall in 
the industry. Usage of FPGAs does not get hardware much 
closer to the data-flow visual nature of user-interfaces, 
since it is still configured with VHDL or similar languages. 
This leaves the conceptual mismatch between higher and 
lower layers as an issue to still be solved or enhanced. 

Despite previous state-of-the-art development software 
tools and hardware target platforms displaying high degrees 
of flexibility, still much is desirable to achieve. We herein 
define a rarely mentioned but very useful situation in 
software development: "Trial  (not necessarily 'and error') 
Reprogramming". This concept bases on finding the best 
code by repeatedly/recursively tuning the same small block 
of code until best results are achieved. This is done by 
allowing the programmer to manipulate the system with 
very low or virtual no turn-around delays. This kind of 
Live-Programming would allow the programmer to keep 
tuning or trying on the same block of code, without ever 
leaving it or having to restart anything in the program. 
Microsoft's Visual Basic/C# and in some way Sun's Java 
Virtual Machines referred to in the next section, nearly 
allow this, but still in a limited fashion. 

 

III.  COMMERCIAL &  RESEARCH EFFORTS 

The industry naturally tends to use well-established 
systems, either directly or through "evolutionary" changes, 
even though technically not being suited for their 
applications. An example is the use of wifi packages for 
"on-the-flight" data-transfer in motorsport races. 
Cross-layer [51] "evolutive" adaptations cannot eliminate 
key-limitations completely, while even keeping overall 
complexity and grasping difficulties. Component-based 
software development [53] addresses budgets and deadlines 
using pre-fabricated components, but hides existing 
inconveniences and does not simplify the core development 
efforts. Complex components still produce complex 
systems, while automotive software is too specialized and 
hardware-dependent to make efficient use of this 
development distribution paradigm. 

In response to over-complexity issues directly related to 
the previously mentioned software tools and hardware 
platforms, some interesting progress in partial solutions has 
been made in the recent past. These efforts in bringing true 
easy-handling solutions to the marketplace, present 
themselves mostly as short-cuts for frequent programming 
tasks and for efficient debugging. Currently most 
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interesting and promising innovations include: 
 

Visual C#: programming language developed by Microsoft since 2001  

1) [27], with features based on advanced techniques of 
also still used Visual-Basic [28]. It introduces a widely 
employed commercial solution for making "almost 
on-the-fly" code-changes. Changes are quickly 
recompiled and applied to the existing program. This 
so-called "background compiler" [29] works during 
editing, allowing syntax errors to be continuously 
highlighted and corrected, thus enabling innovative 
Interactive Programming user experiences. Because 
object-code is kept synchronized with the source-code 
most of the time, much shorter turnaround delays are 
possible. Although large changes demand lengthier 
compilations, it is a big step forward in the quest for 
easy-handling programming paradigms. 

2) JAVA: programming language developed by Sun 
Microsystems since 1995 [30], introduces a 
commercial solution that shifts compilation details and 
its complexity into an intermediate layer or the 
hardware itself. This simplifies the top-most interface 
layer which only has needs to produce well-defined 
byte-codes. An "automatic runtime compiler" also 
called "just-in-time (JIT) compiler" then compiles and 
runs these JAVA byte-codes natively on a JVM (JAVA 
Virtual Machine) as shown in Fig. 7 or even directly on 
the hardware [51]. Again, short turn-around delays and 
fast code-changes through dynamic loading of classes 
[31] are also granted with these systems. The more 
recent C# language works in a similar way, by means 
of its "background compiler" and the CIL (Common 
Intermediate Language). Extreme extensions of the 
already long JAVA multi-layered development systems 
may be found in "language-to-Java" translators and 
compilers, which convert other languages such as C, 
C++, Ada, Cobol, to JAVA byte-code, sometimes even 
converting first to another intermediate language and 
only then to native JAVA byte-code [41] [42] [43].  

 

3) IEC 61131 PLC Standard - this software standard 
unites 5 ways of representing PLC programs, in both 
visual and textual forms [37]. The CoDeSys tool [38] is 
a good example of a commercial application of this 
standard. Fig. 8 shows an example. It allows the user to 
program in his most familiar mode(s). Classical 
compiler-based, this tool has to cope with all 5 modes, 
producing high development/maintenance complexity. 

 

4) ETAS ETK & HiTEX in-circuit dProbe: hardware 
emulator add-ons developed by ETAS [10] and HiTEX 
[39], respectively. These highly disruptive and 
physically intrusive solutions intend to circumvent the 
complete complex software layer structure, by directly 
manipulating hardware at micro-controller and/or 
memory levels. Mimicking the original hardware, they 
are also called "in-circuit" emulators or "by-passers" 
(Fig. 9). Proprietary software user-interfaces then 

allow for direct code and memory manipulation. 
Although very useful and necessary for effective 
debugging, it does not eliminate the need of toggling 
between development and debugging environments. 
Turn-around delays, sluggish learning-curves and high 
complexity are still fully present limitations.  

 

Huge efforts are made to standardize existing software 
and hardware structures, attempting to reach a common 
standard among car- and tool-manufacturers. The strongest 
attempt is the AUTOSAR consortium (AUTomotive Open 
System ARchitecture) [36], uniting core manufacturers 
such as BMW, Bosch, Daimler, PSA, Ford, VW, GM/Opel 
and Toyota. Based on similar principles as in [53], this 
standard merges yet more layers into existing tool-chains 
such as those of ASCET and Matlab Simulink. Existing 
easy-handling problems remain basically untouched, 
reaching almost out-of-control complexity levels. 

Similarly, attempts and combinations [23] [24] to have a 
unique development language have been made by using 
UML [22] and its derivative SysML [26]. This tries to 
produce a front-end or "tying-language" on top of existing 
visual and non-visual tools. Associated translation layers 
create ever-growing chains. Other attempts even create 
meta-layers with multiple internal abstractions and 
concretization layers [25], creating ultra-complex and 
multi-dimensional software architectures (Fig. 10).  

 
Fig. 7 - JAVA program and its byte-code execution on JVM. 

 

Fig. 8 - CoDeSys editor with multi-modal programming possibility. 

   
Fig. 9 - ETK and dProbe hardware "in-circuit" emulators 

HiTEX 
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Fig. 10 - Very complex to maintain/understand multi-dimensional tool 

IV.  HANDLING EFFICIENCY IN DEVELOPMENT 

Handling Efficiency is herein defined as the real results 
vs. human end-to-end effort ratio when handling software 
and hardware packages during system development actions. 
This ratio encompasses intended development efforts and 
actions on user-interfaces, down to the hardware platform 
reactions. It is desirable to be as high as possible. All 
previously described tools present an apparently high 
handling efficiency ratio. Indeed, they focus on visual 
user-interfaces which allow execution of almost all 
necessary tasks quite easily (Tab. 1) without caring about 
underlying mechanisms. Nevertheless, it is clear from 
experience that unacceptably hard troubleshooting efforts 
in face of internal problems might appear quickly and 
without notice. Focus on code-generation efficiency [12] 
and tool integration [19] is not enough. Despite ease of use 
being an actual concern [21], all current tools have very 
complex internal architectures demanding special expertise 
to troubleshoot related problems. Perpetuation of this 
development path reveals the infeasibility of implementing 
some really innovative handling methods, because it would 
require prohibitive overhauls of existing structures. In other 
words, development easiness or difficulty, associated to 
handling efficiency itself, is a two-fold problem. 

 
 

 DESIGNING - creating, customizing and changing FDEFs 
 MONITORING - viewing variable values on the FDEFs 
 DEBUGGING - testing, inspecting and correcting FDEFs 
PROTOTYPING - dynamically testing and changing FDEFs 
 COMPARING - viewing differences between similar FDEFs 
 SIMULATING - running FDEFs on the editor w/o hardware 
 DEPLOYING - applying and running FDEFs on the hardware 

Tab. 1 - Most usual development tasks carried out in automotive scenes 

Current software used in the automotive scene relies on 
classical layered approaches with user-friendly graphical 
interfaces on top of a long tool-chain (Fig. 11). Auto-code 
generators, compilers, scanners and parsers represent the 
"pitfall sources" in such structures. Let us also not forget 
the huge certification efforts [20] of auto-code generators 
alone. The blue line represents the desired path to achieve 
monitoring and debugging features (e.g. reading variables, 

program position) whereas the red line represents the 
desired path to achieve active prototyping features (e.g. 
changing code, algorithms, data). These paths are 
intrinsically difficult to establish, since they have to 
traverse so many different and "opaque" layers.  

Starting a completely new system concept from scratch 
would be too expensive and risky for the automotive 
industry. Therefore, these historically grown "add-on-top" 
layered approaches prevail and are a good reason for 
current automotive tools being so complex and almost 
impossible to maintain without glitches. This is also a good 
reason why these tools lack ultra-fast handling mechanisms 
that would be highly desirable in the automotive scene. 
Current systems are extremely difficult to maintain and 
understand, turning out to be clear that these systems and 
other tentative approaches pitfall on internal development 
and also handling efficiency issues. 

 
 

 
 

 
 
 

Fig. 11 - Typical tool-chain structure for current visual tools 

When really advanced handling features appear in current 
modern tools, it is the result of huge, almost prohibitive 
amounts of effort, especially on the software side. Thus, 
historically speaking, debugging and other manipulation 
features tended to grow as independent assistive entities 
(Fig. 12), avoiding complex layer stems. Therefore, 
unfortunately, they are not fully integrated. These 
conceptually disruptive but feasible solutions rely on 
"layer-avoidance" approaches, rather than on the even more 
disruptive and complex "cross-layer" design (as 
unavoidably done in wireless networking [52]).  

Although advances have been made on "easy-handling", 
our advanced concept of "Live-Prototyping" is still very far 
from reality in both automotive and commercial scenarios. 
Simply put, this innovative concept bases on the possibility 
of virtually eliminating any delays between code-changes 
and hardware reactions. A 100% Interactive-Programming 
tool would be an obvious result. This feature would then 
allow concepts such as "Trial Reprogramming" to arise, 
adding a huge handling efficiency leap to existing systems. 

Techniques followed up by the industry until now show 
that everything has been achieved through "evolutionary" 
approaches. These have already shown to have reached 
levels of highly undesired complexity. "Evolution" 
generally bases on developing abstraction layers over the 
already existing layer stack, mainly because it is infeasible 
to change that legacy stack. "Soft" exceptions to this rule 
are newer systems like JVMs, which were developed with a 
new view of the underlying tool-chain, but nevertheless still 
obeying to classical views and usage of very complex 
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layering, compilers and such. Thus, considering the nature 
of current state-of-the-art software/hardware combinations, 
a "clean-slate approach" seems to be the only reasonable 
and feasible way to redefine innovative easy-handling 
efficiency levels. This radical approach allows us to 
completely detach from all previous implementations, 
producing a system envisioned from scratch. 

 
 

 
 
 
 
 
 
 
 

Fig. 12 – Special assisting tools are developed on the side 

V. AN ADVANCED EASY-HANDLING VIEW 

It is currently impossible to achieve a really disruptive 
"Live-Prototyping" programming mechanism, by simply 
using existing software/hardware combinations. Therefore, 
a new idea must be pursued to accomplish this highly 
innovative breakthrough. This system-manipulation concept 
literally means "changing an alive and running program", 
without ever having to stop or pause it in any way. It 
resembles existing "Fast-" or "Rapid-Prototyping" systems 
regarding simplicity of usage, but with virtually zero 
turnaround or implementation delays. It is not just meant 
that it allows online data parameter changing on a running 
system as in [6] [8] [11] [15] [16] (as all modern systems 
readily allow), but that it also allows to change the 
code/algorithms themselves without the running system 
ever noticing it or having to employ "out-of-the-box" 
procedures. To be truly useful, this mechanism should be 
100% seamless, 100% smooth and 100% imperceptible. 
The hardware limits itself in working and reacting to 
changes, as if they were there since it ever started.  

This "Live-Prototyping" concept compares, by its 
similarity, to an Awake Craniotomy [40], where a conscious 
patient's brain is being manipulated by a neurosurgeon. The 
neurosurgeon needs immediate conscious feedback upon all 
manipulations, to be able to monitor and assess the patient's 
neurological status during that type of surgery. It all 
happens without harming, cooling or in any way stopping 
any patient's organs (reviving them again later). All organs 
of the patient just keep working normally without noticing 
the drastic but literally life-keeping intervention. 

To really accomplish the previous idea, a much more 
transparent and narrow software structure is needed, to 
allow user-interface changes to propagate rapidly and 
efficiently down to the hardware. This should desirably go 
forth without side-effects of intrusive/destructive effects.  

The first step toward actually implementing this 

mechanism unavoidably consists of getting both ends 
(user-interface and hardware) as near as possible to each 
other. Furthermore, let us assume that it is at all possible to 
develop a new kind of programming language which does 
not need any of the complex syntax parsing, compiling, 
assembling and linking/locating layers. This language 
would thus be intrinsically both hardware- and 
user-interface-near. By just keeping strictly needed layers, 
we would reach a simplified structure depicted in Fig. 13. 

A much more direct and hassle-free user↔hardware 
communications path would be much more suitable to 
allow highly useful feature, such as Live-Prototyping. This 
is again represented as red and blue arrows in Fig. 13. 

 

 
 
 
 
 
 
 

Fig. 13 - Innovative narrow SW/HW platform structure 

Our intentions follow three principles: marketplace 
research shows that true easy-handling features are always 
desired by both manufacturers and customers; it turns out to 
be clear that attempts to derive new systems based on 
existing ones are impractical or impossible; automotive 
functionalities possess various particular traits such as 
data-flow orientation and mainly feed-forward processing. 
These principles lead to the concept presented herein.  

The arising concept is the Macro entity. It consists of a 
100% encapsulated functional/mathematical operation. It 
represents any of the needed automotive FDEF-operations, 
such as arithmetic, logic, timing, memory and conditional 
operations. It is immune to "soft" influences as those found 
in classical mechanisms containing flags, stacks, pipelines, 
caches, interrupts, etc. Fig. 14 illustrates such an entity, 
which processes values on the input Nodes in a fully 
autonomous and influence-free way, outputting the result 
on an output Node. The strict characteristics and behaviors 
of this fundamental Macro building-block follow the idea 
of not allowing the user to have any options or alternatives:  

 

1) Strict control: the editor strictly controls, maintains 
and continuously enforces formal correctness of all 
visual elements displayed and associated to Macros. It 
also enforces automation of positioning and connecting 
procedures. This visual level allows no user-errors.  
⇒ Pseudo-Coder layer turns obsolete because the 
Macros are directly used as program representation, 
without any pre- or lexical/syntactical processing. 

 

2) Strict adaptation: all graphical Macro elements are 
themselves perfectly adapted to the subsequent layers. 
⇒ Auto-Code Generator layer turns obsolete because 
Macros are directly used by underlying layers, without 
any need for complex translations or conversions. 
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3) Strict native hardware: used hardware is custom-made 
and fully dedicated to natively processing Macros. 
⇒ Scanner/Parser+Compiler+Assembler layers turn 
obsolete because Macros are directly understood in 
hardware, without translation to native low-level code. 

 

4) Strict uniqueness: a Macro just takes input values from 
memory, processes them and stores the result back into 
memory. All values are identified by unique IDs. 
Macros are executed call-less in a continuous stream. 
⇒ Linker layer turn obsolete because there is no need 
to find variable addresses and prepare function-calls. 

 

5) Strict sequential memory: Macros/Nodes are kept with 
sequential/unique IDs in FLASH/RAM, respectively. 
IDs are automatically created and applied by the editor 
at all time during user visual editing/manipulation. 
⇒ Locator layer turns obsolete because Macros and 
Nodes are simply sequentially written into memory. 

 

 
Fig. 14 - Macro entity with Nodes and immunity to external "noise" 

It must be pointed out that the goal is not to develop a 
new general-purpose language, but one that strictly adapts 
to the needs of the automotive scene. This will then lead to 
systems which are less complex and more transparent. 

It must also be emphasized that the Macros are strictly 
low-level self-contained in the sense that each Macro is 
100% self-sufficient. Thus, they do not require any of the 
classical low-level entities related to flags, signals, stacks, 
registers, caches, pipelines and context in general, for 
getting the inputs successfully and correctly processed to 
the output. Also, the Macros' immunity to "soft influences" 
refers to the previous entities and does not include any 
(normally fatal) hardware failures and such. 

From all previous considerations it is clear that these 
Macros are the connecting idea between the user-interface 
and the hardware. Thus, the missing link is the 
Macros-Sequence, similar in nature with "byte-code" in 
Java [30] [31]. At this precise point, it is very important to 
understand that everything else connects around/to this 
central role-playing Macros-Sequence depicted in Fig. 15.  

At one end, the user-visible part, the visual editor, takes 
the unprocessed raw Macros-Sequence and represents it 
graphically through its graphics-engine. This visual format 
is similar to [46], using graphical elements/icons similar to 
the ones used in [7] [8] [11]. The editor is able to transfer 
user graphical manipulations to the Macro-Sequence, thus 
comprising a continuous two-way relationship. Contrary to 
any graphical tool (like embedded raw source-code [38]), 
this editor relies only on the Macros-Sequence, without any 
separately saved graphical or non-graphical information. 

Finally, it is evident that the hardware platform will have 
to understand the Macros language, since no translation is 

made at that point whatsoever. Thus, at the other end of the 
system, a hard-coded Macro-Processor implemented in an 
FPGA seems to be the best choice to address highest 
flexibility and speed right from the beginning (as JVM 
[44]). This hardware thus also comprises a fast two-way 
relationship with the Macros-Sequence. 

Remember that this disruptive mechanism was allowed by 
the adopted "clean-slate approach". In contrast, conceptual 
directions previously presented as state-of-the-art tools 
grew in a "bottom-up" (ASCET, Matlab, LabVIEW, UML) 
or even "top-down" (JVM, Visual C#, hardware emulators) 
"evolutionary" styles and methodologies. 

As a final note to these ideas, Interactive Programming or 
Live-Prototyping, as we call it, is accomplished by those 
previous two two-way relationships. The Macros-Sequence 
are the privileged conceptual/central gateway to this 
process, keeping everything concentrated upon a single 
transparent and fully encapsulated entity, the Macro itself.  

 

 

 
 
 
 
 
 
 

Fig. 15 - Core-idea centered on the Macros-Sequence 

PRELIMINARY EFFORTS 

To preliminarily test the previously exposed ideas around 
the Macro, a simple editor was programmed in Borland 
C++ for Windows [54] in about only 10 hours. Inside this 
editor the Macro-Processor was simply simulated in 
software. The editor's graphical engine was able to visually 
represent simple but real automotive motorsport FDEFs 
from their corresponding Macro-Sequences.  

Some experimental code to test the predicted possibilities 
of monitoring, debugging, reverse-engineering and even 
simulating FDEFs, has also been implemented. Everything 
was seamlessly integrated and worked on the same visual 
user-interface depicted in Fig. 16. These preliminary tests 
used hand-coded Macro-Sequences (Fig. 16 - top-right list). 
The essential features available after this relatively little 
programming effort were the following: 

 

• DESIGNING - creating, customizing, changing FDEFs 
• MONITORING - viewing variable values on FDEFs 
• DEBUGGING – test, inspecting & correcting FDEFs 
• STEPPING - controlled step-wise execution of FDEFs 
• COMPARING - viewing differences between FDEFs 
• SIMULATING - running FDEFs online w/o hardware 

 

Further experiments show that the followed Macro idea 
may lead to an even more "easy" way to get ultra-advanced 
capabilities, such as Live-Prototyping. This system attains 
such an intrinsic "transparency" by eliminating any notions 
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of: explicit syntax, parsing, auto-generation, compilation or 
assembling; static, dynamic or just-in-time compilation; 
virtual machines and all other forms of implicit conversion 
of one language formats/levels to another. All classical 
layers are eliminated, not just merged or transformed in any 
form, leaving just the indispensable user-interface and the 
lower download mechanisms and, finally, the hardware. 
Internal details of this system have strong conceptual and even technical 

similarities with C#  

[27], Visual-Basic [28], Java Virtual Machines [31] and 
auto-graphics generation directly from source code [46]. 
But this "center-out spreading" concept of the 
"Macros-Sequence" tries to set a new perspective on 
targeting development/processing systems, by allowing 
"true direct processing" and full "bi-directional" 
manipulation. All features are enabled by a very lean 
system without the need for "out-of-the-box" procedures or 
any other costly and complex mechanisms. 

 

 
Fig. 16 - Experimental editor using a Macros-Sequence for fuel-injection 

6. CONCLUSIONS 

Current tools do their jobs well, but most of the time in a 
highly inefficient and complex manner. They use high-level 
syntactic or graphical languages combined with auto-code 
generators. These systems have historically grown through 
a "layered" and "evolutionary" approach, where new layers 
are added to accomplish more complex functions and to 
achieve abstracter user-interfaces. Reducing these systems 
to the strict user needs and to feature Live-Prototyping, 
would result in an infeasible and impractical task. This thus 
called for a "clean-slate approach" in an attempt of not 
being bogged down by "unnecessary" classical structures. 

The first step was to shift the core-mechanism to the 
center of the system, by concentrating everything onto the 
Macros-Sequence. All other components crystallize around 
it (Fig. 15). Note that these appear side-ways rather than 
"above" and/or "under", producing a system where neither 
component lies above/under the others. Therefore, the 
conceptual Macros heritage spreads on the same horizontal 
plane. This would then be called a "center-to-the-sides" 
approach as compared to existing approaches which all cast 
into the "top-down" or "bottom-up" categories. 

In this work-in-progress, the most interesting effects of 
having the key code-entity Macros-Sequence at the center 
of the system, feeding both user and hardware ends, go 
down as follows: strong "WYSIWYG" (What You See is 
What You Get) effect, since there are no hidden layers or 
features; strong "WYSIWIS" (What You See Is What I 
See) [32] effect, since both users and hardware see exactly 
the same thing (contrary to complex compilation and 
decompilation [45] found in other attempts). 

It is not intended to develop a tool to do new things, but to 
do them more efficiently. Fig. 17 shows a simplified 
timeline of our subjective measure of Handling Efficiency 
(HE) progression over the decades for some milestone 
paradigms. The HE component purely from the users' 
perspective show in green and the HE component of the 
internal development efforts of the tools themselves shows 
in red. The largest steps upward correspond to the largest 
user abstraction levels, while the largest steps downwards 
correspond to the largest internal complexity increases. It 
can be seen that something has to be done in respect to the 
systems' internal HE. The Macros might just be a good 
perspective for the automotive-specific environment. 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 17 - Timeline with users' (green) and internal (red) HE 

7. FUTURE WORK 

Live-Prototyping features will emerge in future work. These will not 

compare to pausing and recompiling as in C#  

[27] [29] or VB [28], in recompiling at runtime [30] [31], 
nor to state-of-the-art Rapid-/Fast-Prototyping [6] [15] 
[16]. Distinctly from all state-of-the-art mechanisms, the 
Macro-Processor itself will not be aware of any 
manipulation, due to its independence from external events. 
This allows easy code changes on a fully alive and running 
system, in a fully online and seamless fashion. The 
conceptual complexity of the underlying supporting 
software and hardware structures is relatively minimal.  

From the user's perspective, Live-Prototyping will be a 
100% online and 100% seamless/transparent mechanism 
with zero waits or turnaround delays. This feature will 
naturally respect existing real-time constraints and issues at 
hardware level. For the first time, it will be possible for the 
user to accomplish all possible programming, prototyping, 
simulation, debugging and verification actions, in a truly 
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alive system, just like in an Awake Craniotomy [40].  
In the case of an automotive system, this feature means 

literally the possibility of changing algorithms, general 
code and data, while the engine is normally running. This 
poses safety issues at the level of potential engine damage, 
of course. But these are not much different from the issues 
that currently arise from changing data parameters while the 
engine is being tuned on a dynamometer, especially 
concerning ignition parameters. The handling advantage of 
having immediate engine feedback upon data-changes is 
highly desirable and recognized. Live algorithm changes 
just adds a new dimension to this kind of easy-handling. 

Since state-of-the-art automotive systems are highly 
distributed, with dozens of ECUs all around, connected 
through communications networks, it must be emphasized 
that Live-Prototyping will first center on the centralized 
ECU itself. While not addressing similar live manipulation 
on distributed systems, this possibility will eventually be 
contemplated later on. Clearly, communication and timing 
issues will be of maximum importance there. 

Future work will also contemplate a "hard-wired" 
Macro-Interpreter in FPGA-based hardware. At this point, 
no other translating or processing interface will exist 
between the Macros-Sequence and physical hardware. 
Attempts of creating this kind of micro-coding direct 
processing hardware have already been made [47] [48] 
[49]. This dedicated hardware goes entirely in the direction 
of a 40-year-old interesting philosophical paper [1], by 
finally building hardware designed to directly accomplish 
the tasks it will really be assigned to. 

It is expected that with these previous considerations, a 
system may be built, comprising the live operation of a 
small gasoline combustion engine. This encompasses a 
complete visual editor user-interface suite integrating all 
desired actions, as well as a complete hardware prototype 
able to drive all necessary sensors and actuators of the 
engine. All this will be merged with the dual feature of 
"Live-Prototyping" / "Trial Reprogramming". 
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