
 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 208

Resumo - O presente artigo é iniciado com a identificação do
sistema automóvel motor/chassis, alvo do estado-da-arte das
ferramentas de desenvolvimento e controlo apresentadas logo
de seguida. Aqui mostra-se a necessidade inerente de
mecanismos easy-handling que permitam conseguir-se dar
conta da gama sempre crescente de detalhes programáticos e
operacionais das respectivas centralinas (ECUs). Esta
complexidade surge, em grande parte, devido à elevada
opacidade do caminho entre a interface do utilizador e a
plataforma de hardware. Finalmente, são feitas algumas
considerações sobre melhoramentos que potencialmente
alteram significativamente o modo de programar, prototipar,
simular, depurar e verificar sistemas automóveis. No final são
ainda apresentados alguns detalhes elucidativos destas
melhorias, a partir dum projecto a decorrer e baseado num
"clean-slate approach". É mostrado que encurtando
drasticamente o caminho entre interface e hardware, surgem
possibilidades interessantes como o "Live-Prototype" que se
resume a uma espécie de Programação 100% Interactiva. O
paper [1] é uma excelente introdução para se compreender
melhor as preocupações aqui apresentadas.

Abstract - This paper starts by identifying the automotive

engine/chassis system, which is the target of the
state-of-the-art development and control tools presented right
after. The underlying need for easy-handling mechanisms to
harness the overwhelming and ever-growing range of
programming and operational details of the corresponding
electronic control units (ECUs), is addressed. This complexity
is mainly caused by the highly opaque path between the
user-interface and the hardware platform. Finally, some
considerations on enhancements are made, which potentially
provide significant changes in the way automotive systems are
programmed, prototyped, simulated, debugged and verified.
At the end, some elucidative details of an ongoing "clean-slate
approach" project are disclosed. It is shown that by
shortening the path between interface and hardware,
interesting possibilities arise, such as "Live-prototyping",
which is a sort of 100% Interactive Programming. The paper
[1] is an excellent introductory reading to better understand
the herein presented worries and considerations.

I. INTRODUCTION

Current automotive control and development systems used
in the most renowned car and also in the car-component

manufacturers are complex systems which still use classical
imperative textual programming techniques and standard
handling methods. The corresponding tools, although being
state-of-the-art themselves, center upon historically
layered-grown complex software tool-chains and on
correspondingly inflexible hardware platforms. Very
sophisticated visual tools have been emerging, which allow
to optimize development efforts [2] [3] at the top-most
automotive control-functionalities design. But these
systems still rely, at some internal level or layer of their
assembly, on classical mechanisms such as compilers and
assemblers. These lower tools in turn use standard textual
imperative languages such as mainly "C" for building
machine-code for downloading onto standard and rigid
micro-controller based hardware. Although the top-most
interfaces are now visual, even state-of-the-art tools still
generate "C" code for use by lower-level components [4].
Most of the engine/chassis management functionalities

rely on standard signal-processing and data-flow methods.
Modern automotive and industry-related software tools take
advantage of that fact and concentrate on visual data-flow
programming paradigms [5] [7] [8] [11], therefore avoiding
the hassle of classical low-level textual control-flow
programming at top-level. Even standard tools which use of
control-flow programming at user-interface level use
internal data-flow mechanisms such as time-raster calls
with well-defined data-oriented execution sequences, fully
mimicking this data-flow centered nature.
All of the hardware systems rely on a closed control-loop

comprising the electronic control unit (ECU) itself, which
contains the control-algorithms (software), and finally the
plant to be controlled (vehicle). Control- and sensor-signals
represent the data-flow between the ECU and the car
components (Fig. 1). Unfortunately, the hardware solutions
did not follow the automotive data-flow nature as closely as
the visual tools did. In fact, they still strongly reflect
control-flow structures, therefore producing some very
severe conceptual mismatch between software and
hardware, thereby forcing visual tools to produce
control-flow classical "C" code under their hood.

Fig. 1 - ECU and car closed-loop control with in/out signals

Automotive engine/chassis control and development systems:
quick state-of-the-art overview focused on a "clean-slate approach"

for innovative easy-handling methods

Pedro Kulzer, Bernardo Cunha

control-signals

sensor-signals

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 209

This paper will essentially addresses software
development tools used both in series-car and motorsport
areas, especially the complexity that arises from the
conceptual mismatch between development user-interfaces
and the corresponding hardware target platforms. This
complexity is thus essentially generated by the need of the
new visual tools still having to generate classical code to be
used in still classical hardware platforms.

II. STATE-OF-THE-ART

A. Development software tools

Current software development tools are proprietarily built
or made out of commercial tools, inside car and
car-components manufacturers. While user-interfaces are
now more visual and better suited for the data-flow nature
of automotive functionalities, highly complex layers are
still hidden under the hoods of those tools. Historically
evolved through adding new visual interface layers on top
of the already existing classical layer stack, these huge,
very complex, and expensive software packages, are
illustrated through these state-of-the-art examples:

1) ASCET: short for "Advanced Simulation and Control
Engineering Tool", developed at ETAS [11] since
1997. This tool displays a graphical interface (Fig. 2)
which allows to visually edit/design automotive
functionalities called FDEFs (Function-DEFinitions).
Interestingly enough, it combines representations of
both data- and control-flows into a single visual
language based on graphical processing elements,
while having the capacity of displaying both flows
simultaneously on the same screen view [13]. This tool
is used for series-cars prototyping and development,
while also being applied to Motorsport [14] projects.

2) MATLAB Simulink: short for "MATrix LABoratory"
and "Simulation and Link", developed at Mathworks
[7] since 1984. Very similar to ASCET in terms of the
graphical interface and internal mechanisms, it also
allows designing automotive functionalities through the
special data-flow tool-box Simulink (Fig. 3). Although
not specifically designed for the automotive scene as
the ASCET tool is, it is without doubt the most used
and mentioned tool package in the automotive and
non-automotive industries, papers and general
research. This tool is being applied on most recent
motorsport ECUs as in [15] [16] with a combination of
micro-controller plus FPGA-based hardware.

3) LabVIEW: short for "Laboratory Virtual
Instrumentation Engineering Workbench", developed
at National Instruments [8] since 1986. With evident
similarities to MATLAB Simulink and ASCET (Fig. 4),
it is mainly used for industrial and laboratorial
applications, data acquisition and instruments control.
It also allows processing on both micro-controller and
FPGA-based hardware platforms.

Integrated auto-code generators produce classical "C"
code usable on classical hardware, with the particularity of
Matlab and LabVIEW being able to also target FPGA
platforms. These additionally "sandwiched" auto-code
generators [12] build the necessary interface between the
graphical elements and the underlying "C"-code specialized
classical tool-chains (left of Fig. 5). Corresponding
centralized hardware platforms (right of Fig. 5) close this
type of packages. This tool combination leads to most of
the limitations and pitfalls in these highly complex systems.

Fig. 2 - ASCET automotive-specific visual development tool.

Fig. 3 - MATLAB Simulink general-purpose visual development tool.

Fig. 4 - LabVIEW's general-purpose visual development tool.

Fig. 5 - Matlab tool-chain and series-car EDC17 ECU internal structure.

 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 210

In contrast to legacy but still used "C"/Assembly-only
tools (Fig. 6) the visual counterparts are often referred to as
"Rapid" or "Fast-Prototyping" tools, mainly because of the
relative ease and speed those visual programming methods
allow for users to make changes. Changes are simple visual
manipulations, while underlying auto-code generators do
the heavy work automatically. Delays between changes and
hardware response depend on the extent of the changes and
typically range from half a minute to a few minutes [15].
These tools are thus limited by minimum operating
turn-around delays, imposed by their internal structure.

Fig. 6 - Example of a legacy ECU development software tool-chain.

Although iconic visual handling has to be learned [32]
[33], its commercial success states its usefulness from the
users' point-of-view, for programming complex equipment
including automotive ECUs. The ability of visually
conveying intuitive information is an advantage. It is also
being applied to robotic equipment, with self-explaining
and highly intuitive icons and programming environments
[34] [35], also including script-like programming abilities.

B. Hardware target platforms

Besides proprietary hardware made directly inside the car
or car-components manufacturers, several commercial
platforms are also available. Special micro-controllers
contain dedicated I/O peripherals, besides other
mechanisms to accelerate basic routines for injection- and
ignition-outputting. FPGAs are also starting to invade
special highly flexible prototyping hardware. Some
currently used hardware platforms are the following:

1) Micro-Controllers: special micro-controller families
such as the C167 and the TriCore were developed by
Infineon-Siemens [17] for automotive ECUs. Other
automotive micro-controllers are the MC and MPC
families from Motorola [18]. Although hard to
program, debug and maintain, the vast majority of
series-car ECUs use these "turbo-charged"
feature-packed micro-controllers as their processing
units. Their commercial success has mainly to do with
mass-production cost-optimization, by selling the same
costly and complex software millions-fold.

2) FPGAs: motorsport ECUs and specialized prototyping
hardware tend to use concepts which allow developers
to more quickly and efficiently respond to customer
requests. Thus, platforms have been advancing into

"programmable hardware" since the early 2000's, with
Magneti-Marelli's "FastPRO", Bosch's "MS5" and
dSpace's "RapidPro". These combine MATLAB
Simulink, auto-code generation and standard "C" [6]
[14] [16], exception made to National Instruments'
FPGAs modules using LabVIEW [9].

Although FPGAs have made hardware more flexible,
problems with overwhelming software tools needed to
program/configure them continues to be a major pitfall in
the industry. Usage of FPGAs does not get hardware much
closer to the data-flow visual nature of user-interfaces,
since it is still configured with VHDL or similar languages.
This leaves the conceptual mismatch between higher and
lower layers as an issue to still be solved or enhanced.

Despite previous state-of-the-art development software
tools and hardware target platforms displaying high degrees
of flexibility, still much is desirable to achieve. We herein
define a rarely mentioned but very useful situation in
software development: "Trial (not necessarily 'and error')
Reprogramming". This concept bases on finding the best
code by repeatedly/recursively tuning the same small block
of code until best results are achieved. This is done by
allowing the programmer to manipulate the system with
very low or virtual no turn-around delays. This kind of
Live-Programming would allow the programmer to keep
tuning or trying on the same block of code, without ever
leaving it or having to restart anything in the program.
Microsoft's Visual Basic/C# and in some way Sun's Java
Virtual Machines referred to in the next section, nearly
allow this, but still in a limited fashion.

III. COMMERCIAL & RESEARCH EFFORTS

The industry naturally tends to use well-established
systems, either directly or through "evolutionary" changes,
even though technically not being suited for their
applications. An example is the use of wifi packages for
"on-the-flight" data-transfer in motorsport races.
Cross-layer [51] "evolutive" adaptations cannot eliminate
key-limitations completely, while even keeping overall
complexity and grasping difficulties. Component-based
software development [53] addresses budgets and deadlines
using pre-fabricated components, but hides existing
inconveniences and does not simplify the core development
efforts. Complex components still produce complex
systems, while automotive software is too specialized and
hardware-dependent to make efficient use of this
development distribution paradigm.

In response to over-complexity issues directly related to
the previously mentioned software tools and hardware
platforms, some interesting progress in partial solutions has
been made in the recent past. These efforts in bringing true
easy-handling solutions to the marketplace, present
themselves mostly as short-cuts for frequent programming
tasks and for efficient debugging. Currently most

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 211

interesting and promising innovations include:

Visual C#: programming language developed by Microsoft since 2001

1) [27], with features based on advanced techniques of
also still used Visual-Basic [28]. It introduces a widely
employed commercial solution for making "almost
on-the-fly" code-changes. Changes are quickly
recompiled and applied to the existing program. This
so-called "background compiler" [29] works during
editing, allowing syntax errors to be continuously
highlighted and corrected, thus enabling innovative
Interactive Programming user experiences. Because
object-code is kept synchronized with the source-code
most of the time, much shorter turnaround delays are
possible. Although large changes demand lengthier
compilations, it is a big step forward in the quest for
easy-handling programming paradigms.

2) JAVA: programming language developed by Sun
Microsystems since 1995 [30], introduces a
commercial solution that shifts compilation details and
its complexity into an intermediate layer or the
hardware itself. This simplifies the top-most interface
layer which only has needs to produce well-defined
byte-codes. An "automatic runtime compiler" also
called "just-in-time (JIT) compiler" then compiles and
runs these JAVA byte-codes natively on a JVM (JAVA
Virtual Machine) as shown in Fig. 7 or even directly on
the hardware [51]. Again, short turn-around delays and
fast code-changes through dynamic loading of classes
[31] are also granted with these systems. The more
recent C# language works in a similar way, by means
of its "background compiler" and the CIL (Common
Intermediate Language). Extreme extensions of the
already long JAVA multi-layered development systems
may be found in "language-to-Java" translators and
compilers, which convert other languages such as C,
C++, Ada, Cobol, to JAVA byte-code, sometimes even
converting first to another intermediate language and
only then to native JAVA byte-code [41] [42] [43].

3) IEC 61131 PLC Standard - this software standard
unites 5 ways of representing PLC programs, in both
visual and textual forms [37]. The CoDeSys tool [38] is
a good example of a commercial application of this
standard. Fig. 8 shows an example. It allows the user to
program in his most familiar mode(s). Classical
compiler-based, this tool has to cope with all 5 modes,
producing high development/maintenance complexity.

4) ETAS ETK & HiTEX in-circuit dProbe: hardware
emulator add-ons developed by ETAS [10] and HiTEX
[39], respectively. These highly disruptive and
physically intrusive solutions intend to circumvent the
complete complex software layer structure, by directly
manipulating hardware at micro-controller and/or
memory levels. Mimicking the original hardware, they
are also called "in-circuit" emulators or "by-passers"
(Fig. 9). Proprietary software user-interfaces then

allow for direct code and memory manipulation.
Although very useful and necessary for effective
debugging, it does not eliminate the need of toggling
between development and debugging environments.
Turn-around delays, sluggish learning-curves and high
complexity are still fully present limitations.

Huge efforts are made to standardize existing software
and hardware structures, attempting to reach a common
standard among car- and tool-manufacturers. The strongest
attempt is the AUTOSAR consortium (AUTomotive Open
System ARchitecture) [36], uniting core manufacturers
such as BMW, Bosch, Daimler, PSA, Ford, VW, GM/Opel
and Toyota. Based on similar principles as in [53], this
standard merges yet more layers into existing tool-chains
such as those of ASCET and Matlab Simulink. Existing
easy-handling problems remain basically untouched,
reaching almost out-of-control complexity levels.

Similarly, attempts and combinations [23] [24] to have a
unique development language have been made by using
UML [22] and its derivative SysML [26]. This tries to
produce a front-end or "tying-language" on top of existing
visual and non-visual tools. Associated translation layers
create ever-growing chains. Other attempts even create
meta-layers with multiple internal abstractions and
concretization layers [25], creating ultra-complex and
multi-dimensional software architectures (Fig. 10).

Fig. 7 - JAVA program and its byte-code execution on JVM.

Fig. 8 - CoDeSys editor with multi-modal programming possibility.

Fig. 9 - ETK and dProbe hardware "in-circuit" emulators

HiTEX

 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 212

Fig. 10 - Very complex to maintain/understand multi-dimensional tool

IV. HANDLING EFFICIENCY IN DEVELOPMENT

Handling Efficiency is herein defined as the real results
vs. human end-to-end effort ratio when handling software
and hardware packages during system development actions.
This ratio encompasses intended development efforts and
actions on user-interfaces, down to the hardware platform
reactions. It is desirable to be as high as possible. All
previously described tools present an apparently high
handling efficiency ratio. Indeed, they focus on visual
user-interfaces which allow execution of almost all
necessary tasks quite easily (Tab. 1) without caring about
underlying mechanisms. Nevertheless, it is clear from
experience that unacceptably hard troubleshooting efforts
in face of internal problems might appear quickly and
without notice. Focus on code-generation efficiency [12]
and tool integration [19] is not enough. Despite ease of use
being an actual concern [21], all current tools have very
complex internal architectures demanding special expertise
to troubleshoot related problems. Perpetuation of this
development path reveals the infeasibility of implementing
some really innovative handling methods, because it would
require prohibitive overhauls of existing structures. In other
words, development easiness or difficulty, associated to
handling efficiency itself, is a two-fold problem.

 DESIGNING - creating, customizing and changing FDEFs
 MONITORING - viewing variable values on the FDEFs
 DEBUGGING - testing, inspecting and correcting FDEFs
PROTOTYPING - dynamically testing and changing FDEFs
 COMPARING - viewing differences between similar FDEFs
 SIMULATING - running FDEFs on the editor w/o hardware
 DEPLOYING - applying and running FDEFs on the hardware

Tab. 1 - Most usual development tasks carried out in automotive scenes

Current software used in the automotive scene relies on
classical layered approaches with user-friendly graphical
interfaces on top of a long tool-chain (Fig. 11). Auto-code
generators, compilers, scanners and parsers represent the
"pitfall sources" in such structures. Let us also not forget
the huge certification efforts [20] of auto-code generators
alone. The blue line represents the desired path to achieve
monitoring and debugging features (e.g. reading variables,

program position) whereas the red line represents the
desired path to achieve active prototyping features (e.g.
changing code, algorithms, data). These paths are
intrinsically difficult to establish, since they have to
traverse so many different and "opaque" layers.

Starting a completely new system concept from scratch
would be too expensive and risky for the automotive
industry. Therefore, these historically grown "add-on-top"
layered approaches prevail and are a good reason for
current automotive tools being so complex and almost
impossible to maintain without glitches. This is also a good
reason why these tools lack ultra-fast handling mechanisms
that would be highly desirable in the automotive scene.
Current systems are extremely difficult to maintain and
understand, turning out to be clear that these systems and
other tentative approaches pitfall on internal development
and also handling efficiency issues.

Fig. 11 - Typical tool-chain structure for current visual tools

When really advanced handling features appear in current
modern tools, it is the result of huge, almost prohibitive
amounts of effort, especially on the software side. Thus,
historically speaking, debugging and other manipulation
features tended to grow as independent assistive entities
(Fig. 12), avoiding complex layer stems. Therefore,
unfortunately, they are not fully integrated. These
conceptually disruptive but feasible solutions rely on
"layer-avoidance" approaches, rather than on the even more
disruptive and complex "cross-layer" design (as
unavoidably done in wireless networking [52]).

Although advances have been made on "easy-handling",
our advanced concept of "Live-Prototyping" is still very far
from reality in both automotive and commercial scenarios.
Simply put, this innovative concept bases on the possibility
of virtually eliminating any delays between code-changes
and hardware reactions. A 100% Interactive-Programming
tool would be an obvious result. This feature would then
allow concepts such as "Trial Reprogramming" to arise,
adding a huge handling efficiency leap to existing systems.

Techniques followed up by the industry until now show
that everything has been achieved through "evolutionary"
approaches. These have already shown to have reached
levels of highly undesired complexity. "Evolution"
generally bases on developing abstraction layers over the
already existing layer stack, mainly because it is infeasible
to change that legacy stack. "Soft" exceptions to this rule
are newer systems like JVMs, which were developed with a
new view of the underlying tool-chain, but nevertheless still
obeying to classical views and usage of very complex

A
ut

o-
co

de

C
om

pi
le

r

A
ss

em
bl

er

Li
nk

er

Lo
ca

to
r

 H

A
R

D
W

A
R

E

S
ca

nn
er

 /
P

ar
se

r

D
ow

nl
oa

de
r

V
IS

U
A

L
E

D
IT

O
R

P
se

ud
o-

co
de

r

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 213

layering, compilers and such. Thus, considering the nature
of current state-of-the-art software/hardware combinations,
a "clean-slate approach" seems to be the only reasonable
and feasible way to redefine innovative easy-handling
efficiency levels. This radical approach allows us to
completely detach from all previous implementations,
producing a system envisioned from scratch.

Fig. 12 – Special assisting tools are developed on the side

V. AN ADVANCED EASY-HANDLING VIEW

It is currently impossible to achieve a really disruptive
"Live-Prototyping" programming mechanism, by simply
using existing software/hardware combinations. Therefore,
a new idea must be pursued to accomplish this highly
innovative breakthrough. This system-manipulation concept
literally means "changing an alive and running program",
without ever having to stop or pause it in any way. It
resembles existing "Fast-" or "Rapid-Prototyping" systems
regarding simplicity of usage, but with virtually zero
turnaround or implementation delays. It is not just meant
that it allows online data parameter changing on a running
system as in [6] [8] [11] [15] [16] (as all modern systems
readily allow), but that it also allows to change the
code/algorithms themselves without the running system
ever noticing it or having to employ "out-of-the-box"
procedures. To be truly useful, this mechanism should be
100% seamless, 100% smooth and 100% imperceptible.
The hardware limits itself in working and reacting to
changes, as if they were there since it ever started.

This "Live-Prototyping" concept compares, by its
similarity, to an Awake Craniotomy [40], where a conscious
patient's brain is being manipulated by a neurosurgeon. The
neurosurgeon needs immediate conscious feedback upon all
manipulations, to be able to monitor and assess the patient's
neurological status during that type of surgery. It all
happens without harming, cooling or in any way stopping
any patient's organs (reviving them again later). All organs
of the patient just keep working normally without noticing
the drastic but literally life-keeping intervention.

To really accomplish the previous idea, a much more
transparent and narrow software structure is needed, to
allow user-interface changes to propagate rapidly and
efficiently down to the hardware. This should desirably go
forth without side-effects of intrusive/destructive effects.

The first step toward actually implementing this

mechanism unavoidably consists of getting both ends
(user-interface and hardware) as near as possible to each
other. Furthermore, let us assume that it is at all possible to
develop a new kind of programming language which does
not need any of the complex syntax parsing, compiling,
assembling and linking/locating layers. This language
would thus be intrinsically both hardware- and
user-interface-near. By just keeping strictly needed layers,
we would reach a simplified structure depicted in Fig. 13.

A much more direct and hassle-free user↔hardware
communications path would be much more suitable to
allow highly useful feature, such as Live-Prototyping. This
is again represented as red and blue arrows in Fig. 13.

Fig. 13 - Innovative narrow SW/HW platform structure

Our intentions follow three principles: marketplace
research shows that true easy-handling features are always
desired by both manufacturers and customers; it turns out to
be clear that attempts to derive new systems based on
existing ones are impractical or impossible; automotive
functionalities possess various particular traits such as
data-flow orientation and mainly feed-forward processing.
These principles lead to the concept presented herein.

The arising concept is the Macro entity. It consists of a
100% encapsulated functional/mathematical operation. It
represents any of the needed automotive FDEF-operations,
such as arithmetic, logic, timing, memory and conditional
operations. It is immune to "soft" influences as those found
in classical mechanisms containing flags, stacks, pipelines,
caches, interrupts, etc. Fig. 14 illustrates such an entity,
which processes values on the input Nodes in a fully
autonomous and influence-free way, outputting the result
on an output Node. The strict characteristics and behaviors
of this fundamental Macro building-block follow the idea
of not allowing the user to have any options or alternatives:

1) Strict control: the editor strictly controls, maintains
and continuously enforces formal correctness of all
visual elements displayed and associated to Macros. It
also enforces automation of positioning and connecting
procedures. This visual level allows no user-errors.
⇒ Pseudo-Coder layer turns obsolete because the
Macros are directly used as program representation,
without any pre- or lexical/syntactical processing.

2) Strict adaptation: all graphical Macro elements are
themselves perfectly adapted to the subsequent layers.
⇒ Auto-Code Generator layer turns obsolete because
Macros are directly used by underlying layers, without
any need for complex translations or conversions.

E
D

IT
O

R
 *

H
A

R
D

W
A

R
E

D
ow

nl
oa

de
r

* includes: designing, deploying,

 debugging, prototyping, etc.

Debugging & Manipulating

A
ut

o-
co

de

C
om

pi
le

r

A
ss

em
bl

er

Li
nk

er

Lo
ca

to
r

 H

A
R

D
W

A
R

E

S
ca

nn
er

 /
P

ar
se

r

D
ow

nl
oa

de
r

V
IS

U
A

L
E

D
IT

O
R

P
se

ud
o-

co
de

r

 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 214

3) Strict native hardware: used hardware is custom-made
and fully dedicated to natively processing Macros.
⇒ Scanner/Parser+Compiler+Assembler layers turn
obsolete because Macros are directly understood in
hardware, without translation to native low-level code.

4) Strict uniqueness: a Macro just takes input values from
memory, processes them and stores the result back into
memory. All values are identified by unique IDs.
Macros are executed call-less in a continuous stream.
⇒ Linker layer turn obsolete because there is no need
to find variable addresses and prepare function-calls.

5) Strict sequential memory: Macros/Nodes are kept with
sequential/unique IDs in FLASH/RAM, respectively.
IDs are automatically created and applied by the editor
at all time during user visual editing/manipulation.
⇒ Locator layer turns obsolete because Macros and
Nodes are simply sequentially written into memory.

Fig. 14 - Macro entity with Nodes and immunity to external "noise"

It must be pointed out that the goal is not to develop a
new general-purpose language, but one that strictly adapts
to the needs of the automotive scene. This will then lead to
systems which are less complex and more transparent.

It must also be emphasized that the Macros are strictly
low-level self-contained in the sense that each Macro is
100% self-sufficient. Thus, they do not require any of the
classical low-level entities related to flags, signals, stacks,
registers, caches, pipelines and context in general, for
getting the inputs successfully and correctly processed to
the output. Also, the Macros' immunity to "soft influences"
refers to the previous entities and does not include any
(normally fatal) hardware failures and such.

From all previous considerations it is clear that these
Macros are the connecting idea between the user-interface
and the hardware. Thus, the missing link is the
Macros-Sequence, similar in nature with "byte-code" in
Java [30] [31]. At this precise point, it is very important to
understand that everything else connects around/to this
central role-playing Macros-Sequence depicted in Fig. 15.

At one end, the user-visible part, the visual editor, takes
the unprocessed raw Macros-Sequence and represents it
graphically through its graphics-engine. This visual format
is similar to [46], using graphical elements/icons similar to
the ones used in [7] [8] [11]. The editor is able to transfer
user graphical manipulations to the Macro-Sequence, thus
comprising a continuous two-way relationship. Contrary to
any graphical tool (like embedded raw source-code [38]),
this editor relies only on the Macros-Sequence, without any
separately saved graphical or non-graphical information.

Finally, it is evident that the hardware platform will have
to understand the Macros language, since no translation is

made at that point whatsoever. Thus, at the other end of the
system, a hard-coded Macro-Processor implemented in an
FPGA seems to be the best choice to address highest
flexibility and speed right from the beginning (as JVM
[44]). This hardware thus also comprises a fast two-way
relationship with the Macros-Sequence.

Remember that this disruptive mechanism was allowed by
the adopted "clean-slate approach". In contrast, conceptual
directions previously presented as state-of-the-art tools
grew in a "bottom-up" (ASCET, Matlab, LabVIEW, UML)
or even "top-down" (JVM, Visual C#, hardware emulators)
"evolutionary" styles and methodologies.

As a final note to these ideas, Interactive Programming or
Live-Prototyping, as we call it, is accomplished by those
previous two two-way relationships. The Macros-Sequence
are the privileged conceptual/central gateway to this
process, keeping everything concentrated upon a single
transparent and fully encapsulated entity, the Macro itself.

Fig. 15 - Core-idea centered on the Macros-Sequence

PRELIMINARY EFFORTS

To preliminarily test the previously exposed ideas around
the Macro, a simple editor was programmed in Borland
C++ for Windows [54] in about only 10 hours. Inside this
editor the Macro-Processor was simply simulated in
software. The editor's graphical engine was able to visually
represent simple but real automotive motorsport FDEFs
from their corresponding Macro-Sequences.

Some experimental code to test the predicted possibilities
of monitoring, debugging, reverse-engineering and even
simulating FDEFs, has also been implemented. Everything
was seamlessly integrated and worked on the same visual
user-interface depicted in Fig. 16. These preliminary tests
used hand-coded Macro-Sequences (Fig. 16 - top-right list).
The essential features available after this relatively little
programming effort were the following:

• DESIGNING - creating, customizing, changing FDEFs
• MONITORING - viewing variable values on FDEFs
• DEBUGGING – test, inspecting & correcting FDEFs
• STEPPING - controlled step-wise execution of FDEFs
• COMPARING - viewing differences between FDEFs
• SIMULATING - running FDEFs online w/o hardware

Further experiments show that the followed Macro idea
may lead to an even more "easy" way to get ultra-advanced
capabilities, such as Live-Prototyping. This system attains
such an intrinsic "transparency" by eliminating any notions

V
IS

U
A

L
E

D
IT

O
R

H
A

R
D

W
A

R
E

D
ow

nl
oa

de
r

F
P

G
A

-p
la

tfo
rm

MACRO OP

(fully independent, isolated,

input node 1

input node 2

output

Macros-

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 215

of: explicit syntax, parsing, auto-generation, compilation or
assembling; static, dynamic or just-in-time compilation;
virtual machines and all other forms of implicit conversion
of one language formats/levels to another. All classical
layers are eliminated, not just merged or transformed in any
form, leaving just the indispensable user-interface and the
lower download mechanisms and, finally, the hardware.
Internal details of this system have strong conceptual and even technical

similarities with C#

[27], Visual-Basic [28], Java Virtual Machines [31] and
auto-graphics generation directly from source code [46].
But this "center-out spreading" concept of the
"Macros-Sequence" tries to set a new perspective on
targeting development/processing systems, by allowing
"true direct processing" and full "bi-directional"
manipulation. All features are enabled by a very lean
system without the need for "out-of-the-box" procedures or
any other costly and complex mechanisms.

Fig. 16 - Experimental editor using a Macros-Sequence for fuel-injection

6. CONCLUSIONS

Current tools do their jobs well, but most of the time in a
highly inefficient and complex manner. They use high-level
syntactic or graphical languages combined with auto-code
generators. These systems have historically grown through
a "layered" and "evolutionary" approach, where new layers
are added to accomplish more complex functions and to
achieve abstracter user-interfaces. Reducing these systems
to the strict user needs and to feature Live-Prototyping,
would result in an infeasible and impractical task. This thus
called for a "clean-slate approach" in an attempt of not
being bogged down by "unnecessary" classical structures.

The first step was to shift the core-mechanism to the
center of the system, by concentrating everything onto the
Macros-Sequence. All other components crystallize around
it (Fig. 15). Note that these appear side-ways rather than
"above" and/or "under", producing a system where neither
component lies above/under the others. Therefore, the
conceptual Macros heritage spreads on the same horizontal
plane. This would then be called a "center-to-the-sides"
approach as compared to existing approaches which all cast
into the "top-down" or "bottom-up" categories.

In this work-in-progress, the most interesting effects of
having the key code-entity Macros-Sequence at the center
of the system, feeding both user and hardware ends, go
down as follows: strong "WYSIWYG" (What You See is
What You Get) effect, since there are no hidden layers or
features; strong "WYSIWIS" (What You See Is What I
See) [32] effect, since both users and hardware see exactly
the same thing (contrary to complex compilation and
decompilation [45] found in other attempts).

It is not intended to develop a tool to do new things, but to
do them more efficiently. Fig. 17 shows a simplified
timeline of our subjective measure of Handling Efficiency
(HE) progression over the decades for some milestone
paradigms. The HE component purely from the users'
perspective show in green and the HE component of the
internal development efforts of the tools themselves shows
in red. The largest steps upward correspond to the largest
user abstraction levels, while the largest steps downwards
correspond to the largest internal complexity increases. It
can be seen that something has to be done in respect to the
systems' internal HE. The Macros might just be a good
perspective for the automotive-specific environment.

Fig. 17 - Timeline with users' (green) and internal (red) HE

7. FUTURE WORK

Live-Prototyping features will emerge in future work. These will not

compare to pausing and recompiling as in C#

[27] [29] or VB [28], in recompiling at runtime [30] [31],
nor to state-of-the-art Rapid-/Fast-Prototyping [6] [15]
[16]. Distinctly from all state-of-the-art mechanisms, the
Macro-Processor itself will not be aware of any
manipulation, due to its independence from external events.
This allows easy code changes on a fully alive and running
system, in a fully online and seamless fashion. The
conceptual complexity of the underlying supporting
software and hardware structures is relatively minimal.

From the user's perspective, Live-Prototyping will be a
100% online and 100% seamless/transparent mechanism
with zero waits or turnaround delays. This feature will
naturally respect existing real-time constraints and issues at
hardware level. For the first time, it will be possible for the
user to accomplish all possible programming, prototyping,
simulation, debugging and verification actions, in a truly

 ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 216

alive system, just like in an Awake Craniotomy [40].
In the case of an automotive system, this feature means

literally the possibility of changing algorithms, general
code and data, while the engine is normally running. This
poses safety issues at the level of potential engine damage,
of course. But these are not much different from the issues
that currently arise from changing data parameters while the
engine is being tuned on a dynamometer, especially
concerning ignition parameters. The handling advantage of
having immediate engine feedback upon data-changes is
highly desirable and recognized. Live algorithm changes
just adds a new dimension to this kind of easy-handling.

Since state-of-the-art automotive systems are highly
distributed, with dozens of ECUs all around, connected
through communications networks, it must be emphasized
that Live-Prototyping will first center on the centralized
ECU itself. While not addressing similar live manipulation
on distributed systems, this possibility will eventually be
contemplated later on. Clearly, communication and timing
issues will be of maximum importance there.

Future work will also contemplate a "hard-wired"
Macro-Interpreter in FPGA-based hardware. At this point,
no other translating or processing interface will exist
between the Macros-Sequence and physical hardware.
Attempts of creating this kind of micro-coding direct
processing hardware have already been made [47] [48]
[49]. This dedicated hardware goes entirely in the direction
of a 40-year-old interesting philosophical paper [1], by
finally building hardware designed to directly accomplish
the tasks it will really be assigned to.

It is expected that with these previous considerations, a
system may be built, comprising the live operation of a
small gasoline combustion engine. This encompasses a
complete visual editor user-interface suite integrating all
desired actions, as well as a complete hardware prototype
able to drive all necessary sensors and actuators of the
engine. All this will be merged with the dual feature of
"Live-Prototyping" / "Trial Reprogramming".

REFERENCES

[1] W. McKeeman, "Language directed computer design", AFIPS Joint

Computer Conferences Proceed., November 14-16, 1967, p413-

417.

[2] J. Friedman, "MATLAB/Simulink for Automotive Systems

Design", Design, Automation and Test in Europe, 2006. DATE '06.

Proceed.

Volume 1, 6-10 March 2006 Page(s):1 - 2.

[3] S. Sims, R. Cleaveland, K. Butts, S. Ranville, "Automated

validation of software models", Automated Software Engineering,

ASE2001 Proceed. 16. Annual Int'l Conference 26-29 Nov2001,

91-96.

[4] M. Kuhl, C. Reichmann, I. Protel, K. Muller-Glaser, "From object

oriented modeling to code generation for rapid prototyping of

embedded electronic systems", Rapid System Prototyping, 2002

Proceedings, 13th IEEE Int'l Workshop on 1-3 July 2002, p108-

114.

[5] dSpace GmbH, www.dspaceinc.com.

[6] dSpace, "dSpace RapidPro: Full Power", www.dspaceinc.com.

[7] The MathWorks Inc., "MATLAB Simulink",

www.mathworks.com.

[8] National Instruments, "LabVIEW", www.ni.com.

[9] National Instruments, "Neue Funktionen für LabVIEW, parallel,

drahtlos und in Echtzeit", 2009, www.ni.com.

[10] ETAS GmbH, "ETK/XETK ECU Interfaces", www.etas.com.

[11] ETAS GmbH, "ASCET Software Family", www.etas.com.

[12] U. Honekamp, J. Reidel, K. Werther, T. Zurawka, T. Beck,

"Component-node-network: three levels of optimized code

generation with ASCET-SD", Computer Aided Control System

Design, 1999. Proceedings of the 1999 IEEE International

Symposium on 22-27 Aug. 1999 Page(s): 243-248.

[13] H. Randriamparany, B. Ibrahim, "Seamless integration of control

flow and data flow in a visual language", Computer Systems and

Applications, ACS/IEEE International Conference on. 2001, 25-29

June 2001 Page(s): 428-434.

[14] Bosch Motorsport, www.bosch-motorsport.com.

[15] Bosch Motorsport, "MS5 ECU family", www.bosch-

motorsport.com.

[16] Magneti-Marelli, "FastPRO ECU family",

www.magnetimarelli.com.

[17] Infineon-Siemens, "C167/TriCore µC families",

www.infineon.com.

[18] Motorola, "MC and MPC µC families", www.motorola.com.

[19] M.H. Smith, M. Elbs, "Towards a more efficient approach to

automotive embedded control system development", Computer

Aided Control System Design, 1999. Proceedings of the 1999 IEEE

International Symposium on 22-27 Aug. 1999 Page(s):219 - 224.

[20] T. Glötzner, "IEC 61508 Certification of a Code Generator",

System Safety, 2008 3rd IET Int'l Conference on 20-22 Oct2008,

1-4.

[21] I. Bell, "Software - More than a programming language - Whether

testing cars at automotive companies or controlling production and

quality at manufacturing plants, engineers and scientists need

flexible, cost-effective solutions for test, measurement and

automation", Computing & Control Engineering Journal Volume

18, Issue 1, Feb.-March 2007 Page(s): 26 - 29.

[22] Object Management Group (OMG), "Unified Modeling Language

(UML)", www.uml.org.

[23] L.B. Brisolara, M.F.S. Oliveira, R. Redin, L.C. Lamb, F. Wagner,

"Using UML as Front-end for Heterogeneous Software Code

Generation Strategies", Design, Automation and Test in Europe,

2008. DATE '08, 10-14 March 2008 Page(s): 504 - 509.

[24] T. Farkas, E. Meiseki, C. Neumann, K. Okano, A. Hinnerichs, S.

Kamiya, "Integration of UML with Simulink into embedded

software engineering", ICCAS-SICE 2009, 18-21 Aug.2009

Page(s): 474-479.

[25] C. Reichmann, M. Kiihl, P. Graf, K.D. Muller-Glaser,

"GeneralStore - a CASE-tool integration platform enabling model

level coupling of heterogeneous designs for embedded electronic

systems", Engineering of Computer-Based Systems, 2004

Proceedings. 11th IEEE Int'l Conf. and Workshop on 24-27 May

2004 pp: 225-232.

[26] Object Management Group (OMG), "Systems Modeling Language

(SyML)", www.omgsysml.org.

ELECTRÓNICA E TELECOMUNICAÇÕES, VOL. 5, Nº 2, JUNHO 2010 217

[27] Microsoft, "C# Language Specification 3.0", www.microsoft.com.

[28] Microsoft "Visual-Basic Language Specs", www.microsoft.com.

[29] M. Gertz, "Scaling Up: The Very Busy Background Compiler",

MSDN Magazine, Microsoft, msdn.microsoft.com.

[30] T. Lindholm, F. Yellin, "The JavaTM Virtual Machine Technology

Specification", 2.ed., Sun Microsystems, www.sun.com.

[31] Sun Microsystems, "Java HotSpotTM Virtual Machine", sun.com.

[32] M. Petre, “Why Looking Isn’t Always Seeing: Readership Skills

and Graphical Programming”, Comm. of the ACM, Jun.1995, pp.

33-44.

[33] A. Ko, B. Myers, A. Htet, "Six Learning Barriers in End-User

Programming Systems", Visual Languages and Human Centric

Computing, 2004 IEEE Symposium 30-30 Sep.2004 pp:199-206.

[34] R. Bischoff, A. Kazi, M. Seyfarth, "The MORPHA style guide for

icon-based programming", Robot and Human Interactive

Communication, 2002. Proceedings. 11th IEEE International

Workshop on 25-27 Sept. 2002 Page(s):482 - 487.

[35] MORPHA Konsortium - Kommunikation, Interaktion und

Kooperation zwischen Menschen und intelligenten

anthropomorphen Assistenzsystemen, www.morpha.de.

[36] AUTOSAR-Automotive Open System Architecture, autosar.org.

[37] International Electrotechnical Comission, "IEC 61131-3 standard

for PLC programming languages", www.iec.ch.

[38] Smart Software Solutions, CoDeSys, www.3s-software.com.

[39] HiTEX Development Tools, "In-Circuit Emulators",

www.hitex.com.

[40] V. Bonhomme, C. Franssen, "Awake craniotomy", European

Journal of Anaesthesiology: Nov. 2009, Vol. 26, Issue 11, 906-912.

[41] NestedVm, Binary translation for Java, nestedvm.ibex.org.

[42] C2J Translator, C-programs to Java-programs, novosoft-us.com.

[43] S. Malabarba, P. Devanbu, A. Stearns, "MoHCA-Java: a tool for

C++ to Java conversion support", Software Engineering.

Proceedings of the 1999 Int'l Conference on 22-22 May 1999 pp:

650-653.

[44] S. Nino, T. Mori, YoungHun Ko, Y. Shibata, K. Oguri, "FPGA

Implementation of a Statically Reconfigurable Java Environment

for Embedded Systems", Field-Programmable Technology, 2007.

ICFPT 2007. International Conference on 12-14 Dec2007 Page(s):

317-320.

[45] J. Miecznikowski, L. Hendren, "Decompiling Java using staged

encapsulation", Reverse Engineering, 2001. Proceedings. Eighth Working

Conference on 2-5 Oct. 2001 Page(s): 368 - 374.

[46] H. Prahofer, D. Hurnaus, C. Wirth, H. Mossenbock, "The

Domain-Specific Language Monaco and its Visual Interactive

Programming Environment", Visual Languages and Human-

Centric Computing, VL/HCC. IEEE Symposium 23-27 Sep2007

pp104-110.

[47] G. Chelsey, W. Smith, "The hardware-implemented high-level

machine language for SYMBOL", AFIPS Joint Computer

Conferences Proceedings, May 18-20, 1971, Pages 563-573.

[48] J. Anderson, "A computer for direct execution of algorithmic

languages", AFIPS Joint Computer Conferences archive

Proceedings, December 12-14, 1961, Pages 184-193.

[49] H. Weber, "A microprogrammed implementation of EULER on

IBM system/360 model 30", Communications of the ACM,

Volume 10, Issue 9 (September 1967), Pages: 549 - 558.

[50] The Microengine Company, "WD/90 Pascal MICROENGINE

Reference Manual", preliminary edition, 1979.

[51] C. Porthouse, "High performance Java on embedded devices -

Jazelle DBX technology: ARM acceleration technology for the Java

Platform ", Jazelle DBX WhitePaper, October 2005, ARM Limited.

[52] V. Srivastava, M. Motani, "Cross-layer design: a survey and the

road ahead", Communications Magazine, IEEE Vol.43, Issue

12, Dec. 2005 Page(s): 112 - 119.

[53] P. Vitharana, "Risks and challenges of component-based software

development", Aug 2003, Communications of ACM, Vol.46 Issue

8.

[54] Borland C++ for Windows, www.borland.com.

