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Automotive engine/chassis control and developmenystems:
quick state-of-the-art overview focused on a "cleaslate approach”
for innovative easy-handling methods

Pedro Kulzer, Bernardo Cunha

Resumo - O presente artigo € iniciado com a idefitiacédo do
sistema automével motor/chassis, alvo do estado-dee das
ferramentas de desenvolvimento e controlo apresemtas logo
de seguida. Aqui mostra-se a necessidade
mecanismos easy-handling que permitam conseguir-sgar
conta da gama sempre crescente de detalhes prograiés e
operacionais das respectivas centralinas (ECUSs).
complexidade surge, em grande parte, devido a elaa
opacidade do caminho entre a interface do utilizadoe a
plataforma de hardware. Finalmente, sdo feitas alguas
consideragBes sobre melhoramentos que potencialment
alteram significativamente o0 modo de programar, préotipar,
simular, depurar e verificar sistemas automéveis. bl final sdo
ainda apresentados alguns detalhes elucidativos t&s
melhorias, a partir dum projecto a decorrer e basedo num
"clean-slate approach". E mostrado que encurtando
drasticamente o caminho entre interface e hardwaresurgem
possibilidades interessantes como o "Live-Prototype'jue se
resume a uma espécie de Programacdo 100% InteraciivO
paper [1] é uma excelente introducdo para se comprder
melhor as preocupag¢fes aqui apresentadas.

Abstract - This paper starts by identifying the autonotive
engine/chassis system, which is the target of
state-of-the-art development and control tools premnted right
after. The underlying need for easy-handling mechasims to
harness the overwhelming and ever-growing range of
programming and operational details of the correspoding
electronic control units (ECUSs), is addressed. Thisoetnplexity
is mainly caused by the highly opaque path betweethe
user-interface and the hardware platform. Finally, some
considerations on enhancements are made, which potally
provide significant changes in the way automotiveystems are
programmed, prototyped, simulated, debugged and viéied.
At the end, some elucidative details of an ongoirglean-slate
approach" project are disclosed. It is shown that B
shortening the path between interface and hardware,
interesting possibilities arise, such as "Live-prottyping",
which is a sort of 100% Interactive Programming. Thepaper
[1] is an excellent introductory reading to betterunderstand
the herein presented worries and considerations.

|. INTRODUCTION

Current automotive control and development systaeses

in the most renowned car and also in the car-corapton

inerentee d State-of-the-art

manufacturers are complex systems which still lsssical
imperative textual programming techniques and stehd
handling methods. The corresponding tools, althcagjhg
themselves, center upon histdyical
layered-grown complex software tool-chains and on
correspondingly inflexible hardware platforms. Very

Esta sophisticated visual tools have been emerging, twhilow

to optimize development efforts [2] [3] at the tomwst
automotive control-functionalities design. But thes
systems still rely, at some internal level or lapértheir
assembly, on classical mechanisms such as compifets
assemblers. These lower tools in turn use stan@stdal
imperative languages such as mainly "C" for bugdin
machine-code for downloading onto standard andd rigi
micro-controller based hardware. Although the tapsm
interfaces are now visual, even state-of-the-aolstcstill
generate "C" code for use by lower-level compongfts
Most of the engine/chassis management functioealiti
rely on standard signal-processing and data-flowhaus.
Modern automotive and industry-related softwardstéake
advantage of that fact and concentrate on visuia-fttav
programming paradigms [5] [7] [8] [11], thereforeo&ding
the hassle of classical low-level textual contiolaf

the programming at top-level. Even standard tools whisé of

control-flow programming at user-interface leveleus
internal data-flow mechanisms such as time-rastdis ¢
with well-defined data-oriented execution sequentay
mimicking this data-flow centered nature.

All of the hardware systems rely on a closed cad+trop
comprising the electronic control unit (ECU) itselhich
contains the control-algorithms (software), andaffin the
plant to be controlled (vehicle). Control- and sersignals
represent the data-flow between the ECU and the car
components (Fig. 1). Unfortunately, the hardwaletzms
did not follow the automotive data-flow nature éssely as
the visual tools did. In fact, they still stronghgflect
control-flow structures, therefore producing someryv
severe conceptual mismatch between software and
hardware, thereby forcing visual tools to produce
control-flow classical "C" code under their hood.

Fig. 1 - ECU and car closed-loop control with irt/signals



ELECTRONICA ETELECOMUNICAGOES VOL. 5,Ne 2, JuNHO 2010

This paper will essentially addresses softwar
development tools used both in series-car and rstor
areas, especially the complexity that arises frdm t
conceptual mismatch between development user-futesf
and the corresponding hardware target platformss T
complexity is thus essentially generated by thedrafethe
new visual tools still having to generate classtmle to be
used in still classical hardware platforms.

[I. STATE-OF-THE-ART
A. Development software tools

Current software development tools are proprigtdnililt
or made out of commercial tools, inside car
car-components manufacturers. While user-interfeares
now more visual and better suited for the data-fi@ture
of automotive functionalities, highly complex lageare
still hidden under the hoods of those tools. Histily
evolved through adding new visual interface layamnstop
of the already existing classical layer stack, ¢hésige,

very complex, and expensive software packages, a

illustrated through these state-of-the-art examples

1) ASCET short for "Advanced Simulation and Control

Engineering Tool", developed at ETAS [11] sincH

1997. This tool displays a graphical interface (RYy
which allows to visually edit/design automotive
functionalities called FDEFs (Function-DEFinitions)
Interestingly enough, it combines representatiohs
both data- and control-flows into a single visua

an;
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eIntegrated auto-code generators produce classicdl

code usable on classical hardware, with the paatity of
Matlab and LabVIEW being able to also target FPGA

rPIatforms. These additionally "sandwiched" autoeod

generators [12] build the necessary interface batwibe
graphical elements and the underlying "C"-code igfized
classical tool-chains (left of Fig. 5). Corresporgli
centralized hardware platforms (right of Fig. 5psg this
type of packages. This tool combination leads tcstnuod
the limitations and pitfalls in these highly compkgy/stems.

[ Main | Project: _A_Contraller_C161 [Fresscale MPC56x0bject]

re Fig. 2 - ASCET automotive-specific visual developmiol.
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language based on graphical processing elemen
while having the capacity of displaying both flows
simultaneously on the same screen view [13]. Tda$ t
is used for series-cars prototyping and developmel
while also being applied to Motorsport [14] progect

MATLAB Simulink:short for "MATrix LABoratory"
and "Simulation and Link", developed at Mathworks
[7] since 1984. Very similar tASCETin terms of the
graphical interface and internal mechanisms, ib als
allows designing automotive functionalities througa
special data-flow tool-bosimulink(Fig. 3). Although
not specifically designed for the automotive scese
the ASCETtool is, it is without doubt the most used:
and mentioned tool package in the automotive ar
non-automotive industries, papers and gener
research. This tool is being applied on most rece
motorsport ECUs as in [15] [16] with a combinatimin
micro-controller plus FPGA-based hardware.

LabVIEW: short for  "Laboratory  Virtual
Instrumentation Engineering Workbench", develope
at National Instruments [8] since 1986. With eviden,
similarities toMATLAB Simulinkand ASCET(Fig. 4),

it is mainly used for industrial and laboratorial
applications, data acquisition and instruments robnt
It also allows processing on both micro-controbed
FPGA-based hardware platforms.

2) Fig. 3 - MATLAB Simulink general-purpose visual égepment tool.
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Fig. 4 - LabVIEW'S
3)
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Fig. 5 - Matlab tool-chain and series-car EDC17 E@tdrnal structure.
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In contrast to legacy but still used "C"/Assembiyyo
tools (Fig. 6) the visual counterparts are oftderred to as
"Rapid" or "Fast-Prototyping" tools, mainly becaudehe
relative ease and speed those visual programmirigoiie
allow for users to make changes. Changes are siiglal
manipulations, while underlying auto-code genematdo
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"programmable hardware" since the early 2000'd) wit
Magneti-Marelli's "FastPRO", Bosch's "MS5" and
dSpace's "RapidPro". These combine MATLAB
Simulink, auto-code generation and standard "C" [6]
[14] [16], exception made to National Instruments'
FPGAs modules using LabVIEW [9].

the heavy work automatically. Delays between charzgel

hardware response depend on the extent of the ehzamgl Although FPGAs have made hardware more flexible,

typically range from half a minute to a few minufas. problems with overwhelming software tools needed to

These tools are thus limited by minimum Operatinﬁ:ogram/conﬁgure them continues to be a majompith
turn-around delays, imposed by their internal stmec € industry. Usage of FPGAs does not get hard

closer to the data-flow visual nature of user-ifstees,
since it is still configured with VHDL or similanhguages.
This leaves the conceptual mismatch between highdr
lower layers as an issue to still be solved or roéd.

Despite previous state-of-the-art development softw
tools and hardware target platforms displaying ligbrees
of flexibility, still much is desirable to achievive herein
define a rarely mentioned but very useful situation
software development'Trial (not necessarily ‘and error’)
Reprogramming"” This concept bases on finding the best
code by repeatedly/recursively tuning the same Idohadk
of code until best results are achieved. This isedby
allowing the programmer to manipulate the systerth wi
very low or virtual no turn-around delays. This dimf
Live-Programmingwould allow the programmer to keep
tuning or trying on the same block of code, withewer
leaving it or having to restart anything in the gnam.
Microsoft's Visual Basic/C# and in some way Sumisal
Virtual Machines referred to in the next sectiomarty
allow this, but still in a limited fashion.

Fig. 6 - Example of a legacy ECU development safévtaol-chain.

Although iconic visual handling has to be learn&@][
[33], its commercial success states its usefulfress the
users' point-of-view, for programming complex ecmugnt
including automotive ECUs. The ability of visually
conveying intuitive information is an advantageisltalso
being applied to robotic equipment, with self-expilag
and highly intuitive icons and programming envir@mnis
[34] [35], also including script-like programmingifities.

B. Hardware target platforms
. . . I I1l. COMMERCIAL & RESEARCH EFFORTS
Besides proprietary hardware made directly insidedar

or car-components manufacturers, several commercia.|_he
platforms are also available. Special micro-cotgrsl

contain . dedicated /O pe.rlpherallls, L even though technically not being suited for their
mechanisms to accelerate basic routines for imeet@and o . o
applications. An example is the use wifi packages for

ignition-outputting. FPGAs are also starting to dde "on-the-flight”  data-transfer in  motorsport  races.

special highly flexible prototyping hardwarfe. SomeCross-layer [51] "evolutive" adaptations cannomatiate
currently used hardware platforms are the following

key-limitations completely, while even keeping alér

1) Micro-Controllers special micro-controller families complexity and grasping difficulties. Componentdwxhs
such as the C167 and the TriCore were developed bygftware development [53] addresses budgets ardlides
Infineon-Siemens [17] for automotive ECUs. Othewsing pre-fabricated components, but hides existing
automotive micro-controllers are the MC and MPGnconveniences and does not simplify the core dgwmént
families from Motorola [18]. Although hard to efforts. Complex components still produce complex
program, debug and maintain, the vast majority afystems, while automotive software is too speadliand
series-car ECUs use these “"turbo-chargediardware-dependent to make efficient use of this
feature-packed micro-controllers as their processirdevelopment distribution paradigm.
units. Their commercial success has mainly to db wi In response to over-complexity issues directly tezlato
mass-production cost-optimization, by selling thene the previously mentioned software tools and hardwar
costly and complex software millions-fold. platforms, some interesting progress in partialitsohs has

- . been made in the recent past. These efforts imgipgrtrue
2) FPGAs:motorsport ECUs and specialized prOtOtypm%asy-handling solutionspto the marketplzr;llyceg present

hardware tend to use concepts which allow devetopef .
. - themselves mostly as short-cuts for frequent prograg

to more quickly and efficiently respond to custome - .
.. tasks and for efficient debugging. Currently most

requests. Thus, platforms have been advancing into

industry naturally tends to use well-establishe

besides othésyStemS’ either directly or through "evolutionacjianges,
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interesting and promising innovations include: allow for direct code and memory manipulation.

Visual C#:programming language developed by Microsoft skl

1)

2)

3)

4)

Although very useful and necessary for effective
debugging, it does not eliminate the need of toggli
between development and debugging environments.
Turn-around delays, sluggish learning-curves agth hi
complexity are still fully present limitations.

[27], with features based on advanced techniques of
also still usedvisual-Basic[28]. It introduces a widely
employed commercial solution for making "almost
on-the-fly* code-changes. Changes are quickly
recompiled and applied to the existing program.sThi Huge efforts are made to standardize existing swéw
so-called "background compiler" [29] works duringand hardware structures, attempting to reach a @ymm
editing, allowing syntax errors to be continuoushstandard among car- and tool-manufacturers. Tioagst
highlighted and corrected, thus enabling innovativattempt is the AUTOSAR consortium (AUTomotive Open
Interactive Programminguser experiences. BecauseSystem ARchitecture) [36], uniting core manufactsire
object-code is kept synchronized with the souradeco such as BMW, Bosch, Daimler, PSA, Ford, VW, GM/Opel
most of the time, much shorter turnaround delags aand Toyota. Based on similar principles as in [38]s
possible. Although large changes demand lengthistandard merges yet more layers into existing ¢bains
compilations, it is a big step forward in the quist such as those of ASCET and Matlab Simulink. Exigtin
easy-handling programming paradigms. easy-handling problems remain basically untouched,
JAVA: programming language developed by Sumeaching almost out-of-control complexity levels.
Microsystems since 1995 [30], introduces a Similarly, attempts and combinations [23] [24] tavk a
commercial solution that shifts compilation detailed unique development language have been made by using
its complexity into an intermediate layer or theUML [22] and its derivative SysML [26]. This trie®
hardware itself. This simplifies the top-most ifiee produce a front-end or "tying-language" on top xiseng
layer which only has needs to produce well-definedisual and non-visual tools. Associated translatiayers
byte-codes. An "automatic runtime compiler" alsccreate ever-growing chains. Other attempts evemtere
called "just-in-time (JIT) compiler" then compilasd meta-layers with multiple internal abstractions and
runs these JAVA byte-codes natively on a JVM (JAVAconcretization layers [25], creating ultra-complaxd
Virtual Machine) as shown in Fig. 7 or even dirgcth  multi-dimensional software architectures (Fig. 10).

.
the hardware [51]. Again, short turr_w-around delayd S e :
fast code-changes through dynamic loading of ctasse e e
«  }
[31] are also granted with these systems. The more .
recent C# language works in a similar way, by means
Compiler

of its "background compiler" and the CIL (Common
Intermediate Language). Extreme extensions of the
already longJAVA multi-layered development systems
may be found in "language-to-Java" translators and
compilers, which convert other languages such as C,
C++, Ada, Cobol, tdJAVAbyte-code, sometimes even
converting first to another intermediate languagd a
only then to nativdAVAbyte-code [41] [42] [43].

IEC 61131 PLC Standard this software standard
unites 5 ways of representing PLC programs, in bot !
visual and textual forms [37]. TH@oDeSysgool [38] is

a good example of a commercial application of thi = ~s&arizum
standard. Fig. 8 shows an example. It allows tlee tos |_. :
program in his most familiar mode(s). Classical_';“'i

S Ty PLEs e Lo gt Aa]

compiler-based, this tool has to cope with all de®
producing high development/maintenance complexity.:

ETAS ETK & HIiTEX in-circuit dProbehardware Fig. 8 -CoDeSy=ditor with multi-modal programming possibility.
emulator add-ons developed by ETAS [10] and HITEY ==
[39], respectively. These highly disruptive and_,’
physically intrusive solutions intend to circumvene P
complete complex software layer structure, by diyec
manipulating hardware at micro-controller and/o
memory levels. Mimicking the original hardware, yhe C
are also called "in-circuit” emulators or "by-pasSe
(Fig. 9). Proprietary software user-interfaces then

Fig. 9 - ETK anddProbehardware "in-circuit" emulators
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Scripts
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Fig. 10 - Very complex to maintain/understand mdithensional tool

IV. HANDLING EFFICIENCY IN DEVELOPMENT

Handling Efficiencyis herein defined as the real results

vs. human end-to-end effort ratio when handlingveardfe
and hardware packages during system developmeaohsct
This ratio encompasses intended development eféorts
actions on user-interfaces, down to the hardwaatfqum
reactions. It is desirable to be as high as passiBll
previously described tools present an apparentiyh hi
handling efficiency ratio. Indeed, they focus orsudl

user-interfaces which allow execution of almost all

necessary tasks quite easily (Tab. 1) without gasibout
underlying mechanisms. Nevertheless, it is cleamfr
experience that unacceptably hard troubleshootffarte
in face of internal problems might appear quickiyda
without notice. Focus on code-generation efficiefitg]
and tool integration [19] is not enough. Despiteecaf use
being an actual concern [21], all current tools enaery
complex internal architectures demanding specipEgise
to troubleshoot related problems. Perpetuation hoé t
development path reveals the infeasibility of inmpémting
some really innovative handling methods, becausmitid
require prohibitive overhauls of existing structurin other
words, development easiness or difficulty, assediato
handling efficiency itself, is a two-fold problem.

DESIGNING - creating, customizing and changing FDEFs
MONITORING - viewing variable values on the FDEFs
DEBUGGING - testing, inspecting and correcting FDEFs

PROTOTYPING - dynamically testing and changing FDEFs

COMPARING - viewing differences between similar FDEFs
SIMULATING - running FDEFs on the editor w/o hardware
DEPLOYING - applying and running FDEFs on the hardware

Tab. 1 - Most usual development tasks carried oautomotive scenes

Current software used in the automotive scenesalie
classical layered approaches with user-friendlypkical
interfaces on top of a long tool-chain (Fig. 11uté.code
generators, compilers, scanners and parsers représe
"pitfall sources" in such structures. Let us alst forget
the huge certification efforts [20] of auto-codengeators
alone. The blue line represents the desired patithoeve
monitoring and debugging features (e.g. readindaiséas,
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program position) whereas the red line represehés t
desired path to achieve active prototyping featye=g.
changing code, algorithms, data). These paths are
intrinsically difficult to establish, since they V@ to
traverse so many different and "opaque” layers.

Starting a completely new system concept from ehrat
would be too expensive and risky for the automotive
industry. Therefore, these historically grown "amdtop”
layered approaches prevail and are a good reason fo
current automotive tools being so complex and almos
impossible to maintain without glitches. This isak good
reason why these tools lack ultra-fast handlinghmaaisms
that would be highly desirable in the automotiverse
Current systems are extremely difficult to maintaind
understand, turning out to be clear that theseesystand
other tentative approaches pitfall on internal dgwaent
and also handling efficiency issues.

Linker
Locator

Auto-code
Compiler

VISUAL EDITOI}J
Pseudo-codef
Scanner / Parse
Assembler
Downloader

Fig. 11 - Typical tool-chain structure for currefgual tools

When really advanced handling features appear firect
modern tools, it is the result of huge, almost priive
amounts of effort, especially on the software siflbus,
historically speaking, debugging and other manipora
features tended to grow as independent assistititesn
(Fig. 12), avoiding complex layer stems. Therefore,
unfortunately, they are not fully integrated. These
conceptually disruptive but feasible solutions reyn
"layer-avoidance" approaches, rather than on tka ewre
disruptive and complex “cross-layer" design
unavoidably done in wireless networking [52]).

Although advances have been made on "easy-hangdling”
our advanced concept dfive-Prototyping"is still very far
from reality in both automotive and commercial suérs.
Simply put, this innovative concept bases on thesitodlity
of virtually eliminating any delays between codewhes
and hardware reactions. ¥00% Interactive-Programming
tool would be an obvious result. This feature wothldn
allow concepts such drial Reprogramming"to arise,
adding a huge handling efficiency leap to exisggtems.

Techniques followed up by the industry until nowowsh
that everything has been achieved through "evaiatig'
approaches. These have already shown to have tkache
levels of highly undesired complexity. "Evolution"
generally bases on developing abstraction layees the
already existing layer stack, mainly because ibfisasible
to change that legacy stack. "Soft" exceptionshte tule
are newer systems like JVMs, which were developittd av
new view of the underlying tool-chain, but neveldiss still
obeying to classical views and usage of very corple

(as
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layering, compilers and such. Thus, consideringniieire
of current state-of-the-art software/hardware comations,
a "clean-slate approach" seems to be the only nabt®
and feasible way to redefine innovative easy-haigdli
efficiency levels. This radical approach allows tes
completely detach from all previous implementatjon
producing a system envisioned from scratch.

Debugging & Manipulating

HARDWARE

VISUAL EDITOR

Fig. 12 — Special assisting tools are developetherside &

V. AN ADVANCED EASY-HANDLING VIEW

It is currently impossible to achieve a really dysive

"Live-Prototyping" programming mechanism, by simply

using existing software/hardware combinations. &fwee,
a new idea must be pursued to accomplish this yig
innovative breakthrough. This system-manipulationaept
literally means "changing an alive and running pang’,
without ever having to stop or pause it in any why.
resembles existingFast-" or "Rapid-Prototyping"systems
regarding simplicity of usage, but with virtuallyero
turnaround or implementation delays. It is not jostant
that it allows online data parameter changing aoraming
system as in [6] [8] [11] [15] [16] (as all modesgstems
readily allow), but that it also allows to changeet
code/algorithms themselves without the running esyst
ever noticing it or having to employ "out-of-thexjo
procedures. To be truly useful, this mechanism kshbe

100% seamless, 100% smooth and 100% imperceptib

The hardware limits itself in working and reacting
changes, as if they were there since it ever starte

This "Live-Prototyping" concept compares, by
similarity, to anAwake Craniotomy40], where a conscious
patient's brain is being manipulated by a neuresumgThe
neurosurgeon needs immediate conscious feedbackallpo
manipulations, to be able to monitor and assespdtient's

neurological status during that type of surgery. It all

happens without harming, cooling or in any way ptog
any patient's organs (reviving them again latet)).ofgans
of the patient just keep working normally withouticing
the drastic but literally life-keeping intervention

To really accomplish the previous idea, a much mo

transparent and narrow software structure is neetied

allow user-interface changes to propagate rapidig a

efficiently down to the hardware. This should daisiy go
forth without side-effects of intrusive/destructiefects.

The first step toward actually implementing thi

its
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mechanism unavoidably consists of getting both ends
(user-interface and hardware) as near as possibéacth
other. Furthermore, let us assume that it is gb@dkible to
develop a new kind of programming language whichsdo
not need any of the complex syntax parsing, commili
sassembling and linking/locating layers. This largpia
would thus be intrinsically both hardware- and
user-interface-near. By just keeping strictly nebtwyers,
we would reach a simplified structure depictedio BE3.

A much more direct and hassle-free uséardware
communications path would be much more suitable to
allow highly useful feature, such ase-Prototyping This

is again represented as red and blue arrows irlBig.

AR
04 g <
@) o =
= * € @)
&) 2 04
w * includes: designing, deploy[ng %
dehiinainanratatuning ete
Fig. 13 - Innovative narrow SW/HW platform struaur !;!!@
Our intentions follow three principles: marketplace

research shows that true easy-handling featurealamsgys
hgesired by both manufacturers and customers;ristaut to
be clear that attempts to derive new systems based
existing ones are impractical or impossible; auttiveo
functionalities possess various particular traitghs as
data-flow orientation and mainly feed-forward presiag.
These principles lead to the concept presentedrhere
The arising concept is thdacro entity. It consists of a
100% encapsulated functional/mathematical operatibn
represents any of the needed automotive FDEF-apasat
such as arithmetic, logic, timing, memory and ctodal
operations. It is immune to "soft" influences assth found
in classical mechanisms containing flags, stackslipes,
caches, interrupts, etc. Fig. 14 illustrates sucheatity,
thich processes values on the ingdbdesin a fully
autonomous and influence-free way, outputting theult
on an outputNode The strict characteristics and behaviors
of this fundamentaMacro building-block follow the idea
of not allowing the user to have any options ceralatives:

1) Strict control: the editor strictly controls, maintains
and continuously enforces formal correctness of all
visual elements displayed and associateMagros It
also enforces automation of positioning and coringct
procedures. This visual level allows no user-errors
= Pseudo-Coderlayer turns obsolete because the
Macros are directly used as program representation,
without any pre- or lexical/syntactical processing.

rf) Strict adaptation:all graphical Macro elements are

themselves perfectly adapted to the subsequentslaye

= Auto-Code Generatoiayer turns obsolete because

Macrosare directly used by underlying layers, without

s any need for complex translations or conversions.
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3) Strict native hardwareused hardware is custom-mademade at that point whatsoever. Thus, at the otheroé the
and fully dedicated to natively processibdacros system, a hard-codedacro-Processoimplemented in an
= Scanner/Parser+Compiler+Assembldayers turn FPGA seems to be the best choice to address highest
obsolete becaus®lacros are directly understood in flexibility and speed right from the beginning (4¥M
hardware, without translation to native low-levetle.  [44]). This hardware thus also comprises a fastvay

4) Strict uniguenessa Macro just takes input values from relationship with thdlacros-Sequence

memory, processes them and stores the result bark ithRen:jem:Jedr ,t,hf‘t thlsld:srupt|ve mﬁ‘cl:hlamsmtw:ﬁ alldweld
memory. All values are identified by unique IDs. e adopted “clean-slate approach”. In contrastceptua

Macros are executed call-less in a continuous strearﬂiredions previously presented as _state-of-thetadls
= Linker layer turn obsolete because there is no ne ew in a "bottom-up" (ASCET, Matlab, LabVIEW, UML)

to find variable addresses and prepare functiois-cal ,(,)r even top-'(lzlown (JVM, Visual C#’_ hardware emata)

evolutionary" styles and methodologies.

5) Strict sequential memoryflacrogNodesare kept with  As a final note to these idedsteractive Programmingr
sequential/unique IDs in FLASH/RAM, respectively.|jve-Prototyping as we call it, is accomplished by those
IDs are automatically created and applied by th®oed previous two two-way relationships. TMacros-Sequence
at all time during user visual editing/manipulationgre the privileged conceptual/central gateway tds th
= Locator layer turns obsolete becaubtacros and process, keeping everything concentrated upon glesin
Nodesare simply sequentially written into memory.  transparent and fully encapsulated entity,Ntaero itself.

= -~ = = o ¢
 O=—> MACROOP ™ E = g g
= S 2
-~ —0 a S <§t k|
o o
~ O—} (fully independent, isolated, |—= E " I T [a) <'(
| A A | z g |28
Fig. 14 - Macro entity with Nodes and immunity tdegnal "noise" ) o T =
>

It must be pointed out that the goal is not to dmven _ , L2
new general-purpose language, but one that strctgpts Fig. 15 - Core-idea centered on the Macros-SeqLig.:
to the needs of the automotive scene. This wilhtliead to
systems which are less complex and more transparent

It must also be emphasized that tacros are strictly
low-level self-contained in the sense that edddcro is
100% self-sufficient. Thus, they do not require arythe
classical low-level entities related to flags, silgn stacks,
registers, caches, pipelines and context in gendoal
getting the inputs successfully and correctly pssed to
the output. Also, thdacros'immunity to "soft influences"”
refers to the previous entities and does not ireclady

(normally fatal) hardware f.a |Iure_s and.sqch. Some experimental code to test the predicted pitigsib
From all previous considerations it is clear thla¢se L . . )
of monitoring, debugging, reverse-engineering andne

Macros are the connecting idea between the user'mterfa%?mulating FDEFs, has also been implemented. Ei

and the hardware. Thus, the missing link is the ) .
. . o . . Was seamlessly integrated and worked on the sasumlvi
Macros-Sequengesimilar in nature with "byte-code" in

Java [30] [31]. At this precise point, it is verpportant to user-interface depicted in Fig. 16._These prell_mylrta_sts

: used hand-codedacro-Sequenced-ig. 16 - top-right list).
understand that everything else connects arourtiiito The essential features available after this regftiittle
central role-playindMacros-Sequenceepicted in Fig. 15.

At one end, the user-visible part, the visual editakes programming effort were the following:

the unprocessed raMacros-Sequencand represents it « DESIGNING- creating, customizing, changing FDEFs
graphically through its graphics-engine. This visieamat MONITORING- viewing variable values on FDEFs

is similar to [46], using graphical elements/icamilar to DEBUGGING- test, inspecting & correcting FDEFs
the ones used in [7] [8] [11]. The editor is aldetriansfer STEPPING- controlled step-wise execution of FDEFs
user graphical manipulations to tMacro-Sequencethus COMPARING- viewing differences between FDEFs
comprising a continuous two-way relationship. Cantrto SIMULATING- running FDEFs online w/o hardware
any graphical tool (like embedded raw source-c@&8j)|

this editor relies only on thiglacros-Sequengeavithout any
may lead to an even more "easy" way to get ultraxaded

separately saved graphical or non-graphical inftiona L ) ] - 4
Finally, it is evident that the hardware platforriillwave ~ c@pabilities, such akive-Prototyping This system attains
such an intrinsic "transparency"” by eliminating arofions

to understand th#&lacroslanguage, since no translation is

PRELIMINARY EFFORTS

To preliminarily test the previously exposed ideasund
the Macro, a simple editor was programmed in Borland
C++ for Windows [54] in about only 10 hours. Insithés
editor the Macro-Processorwas simply simulated in
software. The editor's graphical engine was abldoally
represent simple but real automotive motorsport FOE
from their correspondiniylacro-Sequences

Further experiments show that the followildcro idea
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of: explicit syntax, parsing, auto-generation, cdatjpn or
assembling; static, dynamic or just-in-time comijola;
virtual machines and all other forms of implicitre@rsion
of one language formats/levels to another. All sitzed
layers are eliminated, not just merged or transéatinm any
form, leaving just the indispensable user-interfand the
lower download mechanisms and, finally, the harewar
Internal details of this system have strong coneapand even technical
similarities with C#

[27], Visual-Basic [28], Java Virtual Machines [3&hd
auto-graphics generation directly from source cpth.
But this ‘"center-out spreading” concept of
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In this work-in-progress, the most interesting etfeof
having the key code-entitylacros-Sequencat the center
of the system, feeding both user and hardware egals,
down as follows: strong "WYSIWYG" (What You See is
What You Get) effect, since there are no hiddeersyr
features; strong "WYSIWIS" (What You See Is What |
See) [32] effect, since both users and hardwaresaetly
the same thing (contrary to complex compilation and
decompilation [45] found in other attempts).

It is not intended to develop a tool to do newdisirbut to
do them more efficiently. Fig. 17 shows a simptfie

theimeline of our subjective measure ldandling Efficiency

"Macros-Sequence'tries to set a new perspective on(HE) progression over the decades for some milestone

targeting development/processing systems, by aligwi
"true direct processing® and full "bi-directional
manipulation. All features are enabled by a vergnle
system without the need for "out-of-the-box" proaes$ or

any other costly and complex mechanisms.

EEPROM: 154 byte / RAM: 140 byte

eeeeeeeeeeee

i
P0784ms

L 2
UL 1 32 40

KF 41 40 42

MUL 404250

6. CONCLUSIONS

Current tools do their jobs well, but most of thed in a
highly inefficient and complex manner. They usenHigvel
syntactic or graphical languages combined with -gotte
generators. These systems have historically grémough
a "layered" and "evolutionary" approach, where teyers
are added to accomplish more complex functions tand
achieve abstracter user-interfaces. Reducing thgstems
to the strict user needs and to featuree-Prototyping
would result in an infeasible and impractical tabkis thus
called for a "clean-slate approach" in an attemphat
being bogged down by "unnecessary" classical sirest

The first step was to shift the core-mechanismhe t
center of the system, by concentrating everythintp dhe

Macros-Sequencdll other components crystallize around

it (Fig. 15). Note that these appear side-wayserathan
"above" and/or "under"”, producing a system whetlithae
component lies above/under the others. Therefdne,
conceptuaMacrosheritage spreads on the same horizont
plane. This would then be called a "center-to-ides'
approach as compared to existing approaches whichsa
into the "top-down" or "bottom-up" categories.

té«ith zero waits or turnaround delays. This featwid

paradigms. TheHE component purely from the users'
perspective show in green and tH&E component of the
internal development efforts of the tools themselskows
in red. The largest steps upward correspond tdaifugest
user abstraction levels, while the largest stepsnd@rds
correspond to the largest internal complexity iases. It
can be seen that something has to be done in tespte
systems' internaHE. The Macros might just be a good
perspective for the automotive-specific environment

A 4

A

Fig. 17 - Timeline with users' (green) and interfnedl) HE

7.FUTUREWORK

Live-Prototyping features will emerge in future work. These willtno
compare to pausing and recompiling as in C#

[27] [29] or VB [28], in recompiling at runtime [3031],
nor to state-of-the-arRapid/Fast-Prototyping [6] [15]
[16]. Distinctly from all state-of-the-art mechamis, the
Macro-Processor itself will not be aware of any
manipulation, due to its independence from exteenahts.
This allows easy code changes on a fully alive ramthing
system, in a fully online and seamless fashion. The
conceptual complexity of the underlying supporting
software and hardware structures is relatively maii

From the user's perspectivieive-Prototypingwill be a
100% online and 100% seamless/transparent mechanism

naturally respect existing real-time constraintd msues at
hardware level. For the first time, it will be pids for the
user to accomplish all possible programming, pyqiioiy,
simulation, debugging and verification actions,airtruly
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alive system, just like in aAwake Craniotomy40]. [5]
In the case of an automotive system, this featuean®s [6]
literally the possibility of changing algorithmsemeral [7]
code and data, while the engine is normally runnifigs
poses safety issues at the level of potential endamage, [g]
of course. But these are not much different fromitisues [9]
that currently arise from changing data parametbike the
engine is being tuned on a dynamometer, especiafto]
concerning ignition parameters. The handling achgatof [11)
having immediate engine feedback upon data-chaigyes[12]
highly desirable and recognized. Live algorithm rajes
just adds a new dimension to this kind of easy-tiagd

Since state-of-the-art automotive systems are ¥ighl
distributed, with dozens of ECUs all around, conedc
through communications networks, it must be emgealsi [13]
that Live-Prototypingwill first center on the centralized
ECU itself. While not addressing similar live mauligtion
on distributed systems, this possibility will eveaity be
contemplated later on. Clearly, communication daming
issues will be of maximum importance there.

Future work will also contemplate a "hard-wired"
Macro-Interpreterin FPGA-based hardware. At this point,[16]
no other translating or processing interface wikise
between theMacros-Sequenceand physical hardware. [17]
Attempts of creating this kind of micro-coding dite
processing hardware have already been made [47] [48s]

[14]
[15]

[49]. This dedicated hardware goes entirely indliection  [19]
of a 40-year-old interesting philosophical pape}, [y
finally building hardware designed to directly anygish
the tasks it will really be assigned to.

It is expected that with these previous considenati a [20]

system may be built, comprising the live operatafna
small gasoline combustion engine. This encompasses

complete visual editor user-interface suite intéggaall [21)

desired actions, as well as a complete hardwaretype

able to drive all necessary sensors and actuatotheo

engine. All this will be merged with the dual feauof

"Live-Prototyping"/ "Trial Reprogramming:’
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