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Hardware Co-Processor for the OReK Real-Time Executive
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Resumo – Este artigo discute os benefı́cios em utilizar um
co-processador, para melhorar o determinismo e desempe-
nho de um executivo de tempo-real. O co-processador pro-
posto foi modelado numa linguagem de descrição de hardware
(VHDL) e implementado num circuito reconfigurável (FPGA
- Field Programmable Gate Array). Tem a capacidade de gerir
(escalonamento, preempção e execução) várias tarefas tanto
periódicas como aperiódicas. A preempção de uma tarefa que
executa na Unidade de Processamento Central (CPU) é feita
através de uma linha de pedidos de interrupção, que liga o
co-processador ao CPU. Fontes externas de interrupção são
ligadas ao co-processador para permitir uma activação con-
trolada e despacho das respectivas tarefas de serviço.
A validação e avaliação do executivo de tempo-real com a uni-

dade de co-processamento, mostra um aumento significativo
do determinismo e desempenho do sistema, quando compa-
rado com o mesmo sistema mas sem a ajuda da unidade de
co-processamento, ou seja, executando por completo em soft-
ware.

Palavras chave – Acelerador de hardware, sistemas de tempo-
real, co-processador, FPGA, desempenho determinı́stico

Abstract – This paper discusses the benefits of using a hard-
ware coprocessor to improve the determinism and perfor-
mance of a Real-Time Kernel. The proposed coprocessor was
modeled with the VHDL hardware description language and
implemented in a FPGA (Field-Programmable Gate Array).
It is able to manage (schedule, preempt and dispatch) several
tasks, either periodic or aperiodic. The preemption of the task
running on the Central Processing Unit (CPU) is performed
through an interrupt line that connects the coprocessor to the
CPU. External interrupt sources are connected to the copro-
cessor to allow a controlled activation and dispatching of the
respective service tasks.
The validation and benchmarking of the real-time kernel

with the co-processing unit, shows a significant increase on the
determinism and performance of the system, when compared
with the same system but without the help of the co-processing
unit, i.e. running fully in software.

Keywords – RTOS hardware accelerator, FPGA-based copro-
cessor, deterministic performance

I. INTRODUCTION

Traditional Embedded systems are generally composed by
a Central Processing Unit, Memory and Input/Output de-
vices. In order to manage all the resources available, a
Real-Time Kernel is normally employed. Software kernels
are generally preferred, simply because they are more easy
to develop, to test and upgrade every time a new version is
released.

Real-Time kernels diverge from the traditional general pur-
pose kernels. While the main objective of a general purpose
kernel, is to reduce the applications tasks response time
while giving to each one a fair use of the CPU, the goal
of a real-time kernel is to be deterministic, i.e. to guarantee
a maximum response time to external events and to main-
tain the tasks activation and execution, within a rigorous
scheduling.
Thus real-time kernels are used for embedded and critical

systems that require a very accurate time management and
where the failure to comply with the task temporal param-
eters can result in catastrophic failure of the system and the
surrounding environment.
Besides its advantages, software kernels have a major

drawback: they share the computational power of the CPU
with the application tasks. Due to the inability of most
CPU’s to provide true task parallel processing, most of the
embedded systems are unable to manage periodic and exter-
nal task activations, run scheduling algorithms and house-
keeping functions simultaneously with the application soft-
ware. Since most of the embedded systems, only have one
CPU, some of its processing power, needs to be reserved for
kernel execution. This creates a problem not only of perfor-
mance, but even more important, the introduction of inde-
terminism. In figure 1(a), we can observe the execution of a
full software real-time kernel, where the periodic timer and
the interrupt handling routines consumes processing power,
hence not available to the applications.

(a) Execution example of a full software kernel implementation.

(b) Execution example of a hardware accelerated kernel.

Fig. 1: Full software versus software/hardware kernel.

Indeterminism is most visible on the external interrupts,
due to the inability of knowing when they are going to
happen. If in a certain interval of time, several peripher-
als on the system fire each one an interrupt, the CPU will
be overloaded, wasting task processing time and increasing
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the probability for the appearance of several problems, such
as, task deadline miss (which can be catastrophic), task ac-
tivation miss, synchronization timing problems and also but
not least, decrease of system quality and performance.
By using a hardware supported kernel, it is possible to in-

crease the available processing time by directly controlling
the CPU interrupt signal. In figure 1(b), we can observe the
kernel execution were the coprocessor controls the proces-
sor interrupt signal, managing in a much more efficient way,
the available processing time. Also, the wasted processing
power will be reduced, since it’s the coprocessor that man-
ages all the interrupt requests that comes from the external
peripherals. In this way, the CPU is only interrupted when
required to preempting the running task and dispatching a
higher priority one.

A. Reconfigurable Circuits

When designing and fabricating Systems-on-Chip, the
high development and fixed manufacturing costs are atten-
uated by fabricating millions of chips. However for embed-
ded systems targeting small markets and very specific en-
vironments, the requirements can become very unique, so
developing and manufacturing custom chips for these spe-
cific conditions, becomes completely impossible due to the
high costs.
To address these problems programmable or reconfig-

urable devices, such as FPGAs can be the right answer.
Since the manufacturing costs are attenuated by fabricating
millions of FPGAs chips, the use of these reconfigurable
circuits within embedded systems becomes very attractive.
Moreover, since modern systems are often very complex,
the probability of containing bugs is very high. If the im-
plementation is based on FPGA technology we are able to
reconfigure the circuit, allowing to solve the problem with-
out changing the actual hardware or building a new chip.
Despite the potential of reconfigurable circuits, it is not

possible to run an FPGA-based systems at the same fre-
quencies that a custom SoC can run. However, this can be
mitigated in some applications by a convenient exploration
of the parallelism.

B. Paper Organization

Section II shows the motivation for this article, intro-
duces some related work about embedded devices and also
presents the OReK real-time kernel. Section III shows the
coprocessor details and architecture. Section IV shows how
the evaluation was done and the results that were obtained.
Then, in the Section V, the conclusions are presented.

II. MOTIVATION AND RELATED WORK

The use of FPGAs in the context of a real-time systems
introduce the ability to easily exploit the reconfigurability,
in order to provide custom hardware support for the kernel
execution. It allows taking the advantage of constructing an
application specialized coprocessor that is able to provide
the same features of a real-time software kernel, but with
the possibility of executing in specialized hardware units in
parallel with the application tasks.

Several authors already demonstrated that with hardware
support it is possible to reduce the overhead of kernel ex-
ecution (namely interrupt handling, context switching and
task scheduling [1] [2] [3]. Also, in [4] the author demon-
strates that the use of a coprocessor, clearly improves the
response time of the application. In [1], the acceleration
is provided only for the scheduler and in [3], it is only de-
scribed the interrupt management, despite the author refer-
ence to the hardware acceleration of context switching and
scheduling.
By using a coprocessor to accelerate the real-time kernel

execution, most of the kernel execution overhead can be
removed from the processor, remaining only a simplified
interrupt servicing primitive for context switching purposes
(see Figure 1(b)).

The OReK Kernel

OReK (figure 2), is a full-software, object-oriented real-
time kernel for embedded systems, developed in C++. This
kernel implements Time Management Services, Task Man-
agement and also, binary Semaphores managed by the Re-
source Stack Policy, for shared resources that require a mu-
tual exclusion access.
The following types of tasks are supported: Soft and Hard

real-time Periodic tasks, Soft and Hard real-time Aperi-
odic/Sporadic tasks and Non Real-time tasks.
The OReK Kernel implements a periodic routine that al-

lows the following actions to be executed: system tick
counter update, tasks priority update, periodic tasks activa-
tion management according to their temporal parameters,
aperiodic tasks activation according to their temporal re-
strictions and explicit or external interrupt requests, the de-
tection of temporal violations (i.e. deadline miss) and also,
the task periodic scheduling.
For the interrupt management, the OReK kernel imple-

ments a routine which is executed every time the processor
receives an interrupt request. This routine allows the man-
agement of aperiodic task activation requests with a min-
imum of processing time consumption. Since this kernel
is a full software implementation, all interrupt requests are
managed in a sequential way.
The kernel allows the tasks to be scheduled according to

the following schemes: Rate Monotonic (RM), Deadline
Monotonic (DM), Earliest Deadline First (EDF) and also
First Come - First Served (FIFO).
The OReK kernel porting to PowerPC and Microblaze

platforms is described in [5], it was also used in conjunction
with the MIPS-based ARPA-MT Real-Time Processor and
its tightly coupled ARPA-OSC Real-time kernel hardware
accelerator, which resulted in a improved determinism and
performance [6] [7]. Although this approach has the disad-
vantage of not allowing the use of the hardware supported
implementation of the OReK kernel in other platforms with
other processor architectures without a fully coprocessor re-
design.
To allow the use of the hardware accelerated version of the

OReK kernel in other platforms, a generic loosely coupled
coprocessor architecture needs to be developed, in order to
provide a much easier and generic communication infras-
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Fig. 2: OReK Kernel Software Architecture

tructure with multiple CPU architectures. This is the aim
of this work and will be presented and evaluated in the re-
maining sections of this paper. The coprocessor described
in this paper, provides a complete acceleration of all kernel
functions, such as time management, tasks priority updates,
tasks scheduling and dispatching, peripheral interrupt re-
quests management, and also semaphore management, al-
lowing a more complete solution.

III. COPROCESSOR ARCHITECTURE

Fig. 3: Overall embedded system architecture with a kernel
coprocessor.

In this section, an architecture proposal for a coprocessor
is presented (Figure 3 and Figure 4). The coprocessor is
constituted mainly by a 64 bit precision timer, an external
interrupt manager, task manager, semaphores control block
for the resources that require mutual exclusive access, and
also, an instruction decoder that is used to access all of it’s
capabilities. For testing and evaluation purposes, this archi-
tecture was implemented in the FPGA Virtex 2 Pro, the co-
processor connects to the system, using the interface for the
Processor Local Bus. The output interrupt line is connected
directly to the PowerPC 405 CPU, and all of the peripheral

interrupt lines, are directly connected to the coprocessor for
parallel management.

System Timer

The coprocessor has it’s own temporal management
through a programmable 64bit precision timer. This timer
can be programmed to create a periodic tick with a chosen
precision, that is used to control all timing operations such
as, task period counting, minimum inter-arrival time anal-
ysis and scheduler activation for determining the highest
priority task in a certain instant of time.

Fig. 5: Interrupt Manager

Interrupt Manager

The Figure 5 shows the internal architecture of the Exter-
nal Interrupt Manager, for the coprocessor.
For each interrupt line there’s an Interrupt Connector, that

stabilizes the signal for analysis and detection if an interrup-
tion is being issued. Depending on the setup, an interrupt
can be detected when the signal is in rising edge (0 → 1),
falling edge (1 → 0) or both. The interrupt detection can
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Fig. 4: Coprocessor Architecture - Global View

Fig. 6: Task Manager

also be disabled. When an interrupt is detected an activa-
tion signal is generated.
The Minimum Inter-Arrival Time Analyzer, which also ex-

ist for each interrupt line, receives an activation signal from
the IC, and only allows it to pass to the Manager, if the min-
imum time since the last activation has passed, otherwise,
the output will be zero. This block, doesn’t delay the signal
with clock synchronization, working like a multiplexer.
The Manager, directs the activation signal coming from

the MIT Analyzer to the bounded task. The task binding
is pre-programmed into the Manager, and also like the MIT
Analyzer, the Manager block doesn’t delay the interruption
signal with clock synchronization, also working like a mul-
tiplexer.

Task Manager

The Figure 6 shows the internal architecture of the Task
Manager.

The Task Table consists of Task Control Blocks that con-
tain the temporal attributes of each registered task, such as
period, relative deadline, absolute deadline, phase and also
other special attributes like stop pending signal, deadline
missed signal, task type and the task state.

The Control Block, is responsible for the task readiness ac-
tivation. It generates periodic task activations according to
the task period if the task is periodic. If the task is aperi-
odic/sporadic or non real time, it will receive the activation
signals coming from the Interrupt Manager or Instruction
Decoder, respectively. Each task is controlled in parallel.

The Task Scheduler contains the Scheduling algorithm
(see Section III for algorithm details), which receives from
all the tasks, their respective periods, relative deadlines
and absolute deadlines, which according to the selected
scheduling algorithm, it will output or the task with the
highest priority or the background in case there is no task
to execute.
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The Task Scheduler Execution Manager, is used to control
the scheduler activation. In order to prevent an execution
request when the algorithm is already under execution, this
management unit was implemented.
Finally, we have the dispatcher, which is responsible for

the interrupt of the processor for a task preemption, if there
is a new task to execute that has a higher priority. If there is
no new task with a higher priority, no interrupt is issued.

Semaphore Manager

For resources access synchronization, the coprocessor im-
plements a Semaphore controller, that allows an application
to register for a certain semaphore with it’s priority level.
After that, the task can lock and unlock the semaphore,
in order to raise or decrease the System Ceiling, prevent-
ing other tasks from taking over the CPU context. The
Semaphores use a simplified version of the Stack Resource
Policy [8], in order to reduce the amount of logic cells, so
there are some restrictions to it’s use, such as the order of
unlocking must be reversed in relation to the locking order
(Lock A - Lock B - Unlock B - Unlock A). Also, it’s not pos-
sible to unregister a single task from a semaphore, it is only
possible to reset all of it’s registrations.

Scheduler Algorithm

The Figure 7 represents the parallel scheduler algorithm,
used to determine the highest priority task in a certain mo-
ment of time, in a system that supports eight tasks.
The algorithm execution is very simple. In the first cycle,

since the scheduler and the task activation occur in parallel,
the scheduler needs to wait for the tasks that were activated
during the periodic tick, to change their state to ready.
Then for each task in the system and according to the

scheduler policy (Rate Monotonic, Deadline Monotonic or
Earliest Deadline First), at the second cycle the scheduler
selects a temporal attribute from each task (RM→Period,
DM→Relative Deadline and EDF→Absolute Deadline).
If there is no task registered in the task cell, or the task is

not ready to be executed, the input will be disabled.
In the third cycle, each task selected attribute is compared

2 by 2 in parallel, reducing the number of tasks to be com-
pared in the next cycle by half, and in the fourth cycle, tasks
are again compared 2 by 2, reducing to two tasks and now,
in the fifth and final comparison, the algorithm obtains the
highest priority task. If there is no task attribute present at
the entrance of the Minimum Block, the output will be dis-
abled, and if there is no task available to be executed, the
scheduler algorithm will disable it’s output, indicating that
it’s the background that should occupy the CPU context.
The complexity of the algorithm is O(logN) and by using

the formula
Cycles = 2+ log2N

we can determine the exact number of cycles that the algo-
rithm will require to obtain a result, in order to the max-
imum number of tasks supported by the coprocessor(N).
This guarantees, that for a certain number of tasks, the algo-
rithm will always takes the same number of cycles to obtain
a result, making it truly deterministic.

IV. EVALUATION AND RESULTS

The FPGA that was used for test and evaluation, was a
Virtex 2 Pro, which internally has a PowerPC 405 Proces-
sor. The operation frequency for both processor and FPGA
were 300Mhz and 100Mhz respectively. The Instruction
Segment were placed in a special memory, directly con-
nected to the PowerPC and the Data Segment along with
the Heap and Stack, were placed at the System Memory. In
order to connect the System Memory and the Coprocessor,
a Processor Logic Bus (v4.6) was used (see Figure 3).
Since the Virtex 2 Pro has few logic cells, it was only pos-

sible to synthesize the coprocessor in order to support a to-
tal max of 16 tasks along with 4 semaphores and 5 external
interrupt lines. But be aware, this is only a FPGA resource
limitation, not an architectural one.
In [5], the author already evaluated the OReK kernel in full

software implementation, so for this article, the evaluation
will cover only the kernel execution with the coprocessor
support. Also, the use of the PLB introduces a high de-
lay when accessing the system memory or the coprocessor
registers, since it takes 138ns just to read one 32bit regis-
ter, and 201ns to write to a register, so this aspect should
be taken in consideration when observing the system prim-
itives execution timings [4].
To measure the time that each kernel primitive requires to

execute, the processor timer was used. The PowerPC 405
has a 64bit internal clock that starts running right at system
boot, and by accessing their registers, it is possible to obtain
a time value with a precision of 3,3ns.
There are some special primitives, which require special

explanation. The Context Change routine is executed every
time the coprocessor generates an interrupt. Take in consid-
eration that the measured time in the table does not contain
the cycles that are required by the scheduler to obtain the
highest priority ready-to-execute task. On the other hand,
the Task termination routine, already contains the cycles re-
quired by the scheduler, since that for every ending task, the
coprocessor is ordered to schedule a new task to replace the
processor context.
For the semaphores primitives, the Enable Semaphore

primitive is not applicable when using a coprocessor, sim-
ply because the semaphores are always enabled. This prim-
itive is only valid in the full software version of the OReK
kernel.

V. CONCLUSIONS

This paper presented the architecture of a hardware co-
processor for the OReK Real-Time Executive. With the
use of this co-processor, periodic and aperiodic tasks acti-
vation determinism is improved and all tasks activation are
done in parallel. This means that it is now possible to ac-
tivate all tasks simultaneously, allowing a by-the-clock ac-
curacy, completely removing the indeterminism associated
to an unpredictable number of tasks to be set to a ready sta-
tus and, unpredictable number of consecutive external in-
terrupt requests, since now all external interrupts are fully
controlled and monitored by the coprocessor.
Also, the use of the coprocessor reduces substantially the

time necessary for a tasks context switch and task termina-
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Fig. 7: Scheduler Diagram

Parameter Evaluated Implementation OReK-CP #
Non Cached Cached Tasks

Kernel Special Execution Routines

Task Context Change BG→Task 7,870µs 1,323µs AnyTask→Task 7,893µs 1,343µs

Task Termination

Task→BG 6,722µs 2,237µs 4Task→Task 6,959µs 2,257µs
Task→BG 6,722µs 2,237µs 8Task→Task 6,959µs 2,257µs
Task→BG 6,791µs 2,296µs 16Task→Task 7,029µs 2,316µs

Kernel Primitives

Kernel Initialization
30,808µs 18,810µs 4
32,234µs 19,641µs 8
34,838µs 21,423µs 16

Kernel Shutdown
27,297µs 13,305µs 4
40,286µs 19,503µs 8
65,567µs 30,765µs 16

Start Kernel Execution 1,227µs 0,752µs

Any

Stop Kernel Execution 0,475µs 0,376µs
Disable Interrupts 0,227µs 0,221µs
Enable Interrupts 0,227µs 0,221µs
Get Tick Count 1,283µs 0,531µs
Disable Preemption 0,498µs 0,353µs
Enable Preemption 0,498µs 0,372µs
Create Non-RT Task 10,470µs 5,187µs
Create Soft-Periodic Task 10,530µs 5,128µs
Create Soft-Aperiodic Task 12,668µs 7,999µs
Create Hard-Periodic Task 10,589µs 6,157µs
Create Hard-Aperiodic Task 12,688µs 8,038µs
Destroy Task 6,553µs 3,742µs
Start Task 11,206µs 5,563µs
Stop Task 3,286µs 1,940µs
Activate Task 2,633µs 1,564µs
Get Task State 3,069µs 1,980µs

TABLE I
KERNEL TIMING EVALUATION - TASK PRIMITIVES

Parameter Evaluated Implementation
OReK-CP

#

Non-Cached Cached Semaphores
Create Semaphore 7,266µs 3,722µs

AnyDestroy Semaphore 6,296µs 3,362µs
Register Task On Semaphore 4,039µs 2,296µs
Enable Semaphore Not Applicable
Wait on Semaphore 3,326µs 1,821µs AnySignal Semaphore 3,148µs 1,603µs

TABLE II
KERNEL TIMING EVALUATION - SEMAPHORES PRIMITIVES

Coprocessor Internal Routines Cycles Time
External Task Activation 5 50ns
Periodic Task Activation 2 20ns

TABLE III
COPROCESSOR EXECUTION TIMINGS

Parameters Value
Number of Tasks 2,4,8,16,32,64,128,256
Number of Interrupt Lines 0-255
Number of Semaphores 0-255

TABLE IV
COPROCESSOR SYNTHESIS PARAMETERS

tion routines execution, leaving more processing time for
the tasks and improving the efficiency of the system. It also
improves the determinism because, now it is the dispatcher
that orders an interrupt of the CPU execution for a context
switch, the scheduler is actually executed inside the copro-
cessor, in parallel with the task processing, removing the
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Number of Tasks Flip-Flops LUT’s Slices
4 3243 5943 3302
8 4673 9623 5137
16 7529 16805 8945
32 12303 30765 16307

TABLE V
COPROCESSOR RESOURCES USAGE FOR 5 INTERRUPTION LINES AND

4 SEMAPHORES

dependency from the number of tasks registered in the sys-
tem, leaving with a code execution that is very deterministic
and very fast.
Unfortunately, due to high latency generated by the PLB

and PLB interface [4], the kernel execution primitives be-
came very slow when compared to the full software OReK
kernel version [5], although if better ways are used to inter-
connect to the coprocessor instruction decoder and internal
registers (i.e. direct connection from the CPU to the copro-
cessor), the timings can be greatly improved. The use of
the PLB was imposed by the testing platform and not by
the coprocessor architecture.
To conclude this article, the coprocessor can manage pe-

riodic and aperiodic tasks scheduling and activation, im-
pose time limits for the external interrupt requests and helps
to synchronize shared resources through the use of inter-
nal semaphores. With these capabilities, the coprocessor
greatly improves not only performance but more important,
the determinism. So, it is now possible to simulate the sys-
tem behavior, due to the removal of software kernel depen-
dencies on unpredictable factors, such as, external interrupt
requests overload, number of tasks registered in the system,
number of tasks to be activated in a certain moment of time
and also but not least, task synchronization factors related
to the system ceiling.
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