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Localization techniques for autonomous mobile robots

Jo#o Silva, Nuno Lau, Anténio J. R. Neves

Abstract — Mobile autonomous robotics is nowa-
days an area of study much addressed by research
teams worldwide. One of the main challenges to
create robots that can be really autonomous is the
self-localization problem. For a robot to be able to
plan a motion and move in a useful way, it should
know where it is in the environment. Otherwise,
it would just move randomly, probably not being
useful at all., Then, there is also the case when one
does not have a map to provide to the robot. In
those situations, the robot should be able to build
a map and localize itself relatively to it on runtime.
This document aims to provide a brief presentation
of these problems and some of the currently used
solutions.

I[. INTRODUCTION

Self-localization and mapping are classic problems of
intelligent mobile robotics, over which research is still
extremely active. These are part of the more general
challenge of defining, managing and updating the robot
internal world model. Sensor and information fusion
techniques are widely used for these tasks. Generally,
robotg have access to partial and uncertain informa-
tion through a set of multi-modal sensors. Tn dynamic
environments, information fusion (of historical infor-
mation and information coming from different sensors)
is essential for the world model to be as precise as
possible. Information fusion for localization is usually
addressed through the use of probabilistic technicues
such as Kalman or particle filters, sometimes conju-
gated with maximum likelihood techniques.

The integration of information over time in order
to filter sensor noise is essential to get better esti-
mates. This type of integration may be performed
using Kalman filter based approaches, Monte-Carlo
mnethods or Markov approaches. Generally, Monte-
Carlo [1] approaches have better performance in cases
where great discontinuities of the output values are
expected, ag the assumption of Gaussian probability
density functions of the Kaliman flter [2] is usually
less accurate. However, Kalman filtering is a very ef-
fective method if the assumptions of Gaussian noise
can be met and the system can be linearized. Other
comimnon approaches are the use of the Extended and
Unscented Kalman filters [3], which are prepared to
deal with non-linear systems at the cost of more com-
putational weight.

When working with mobile autonomous robots, there
are typically two scenarios. The environment can be

known or partially known and the robot needs to locai-
ize itself, or the environment is unknown and the robot
needs to build the map as it runs. This is addressed
as Simuitaneous Localization And Mapping (SLAM)
and it is another common application of sensor fusion
techniques [4], [3].

This document presents the main issues of the local-
ization problem in Section II. A brief summary of some
of the most commonly used localization algorithms is
presented in Section IT1. Section IV briefly presents the
SLAM problem and common approaches to the map-
ping and SLAM forms. Some remarks are presented in
Section V.

IT. LOCALIZATION PROBLEM

The problem of mobile robots localization is to iden-
tify where a robot is, given a map of the environment
around it. The localization of a robot is usually de-
fined as a pose, which contains a position (given in
some coordinate system) and an orientation (relative
to the defined coordinate system). When a robot is
running and performing localization by its own means,
it is not sure where it really is and how it really is ori-
ented. The pose that it keeps is thus called belicfs, as
the robot believes it has a particular pose, but there is
no guarantee that it is really correct; it is an estimate.
This belief can be presented as.a probability distribu-
tion function, bel(x), where x is the pose of the robot,
whichever coordinates are used (it can be a 1D, 2D or
3D situation, both for pesition and orientation).

At some moments of the run, the robot gets informa-
tion from sensors that are at its disposal. These sensors
can get information about the surroundings and pro-
vide information with some degree of accuracy about
the pose at that instant. A robot can be equipped with
a variety of sensors to heip localization purposes, but
this will not be subject to analysis. Let us just con-
sider that the sensors provide measurements z that are
also not 100% accurate, they have some noise associ-
ated. The observations are represented by an obser-
vation model written as p(z|x), which is a probability
function.

Thus, the localization problem is mostly a probabilis-
tic problem. Robots must have models for their move-
ment {motion models) that are capable of providing
the beliefs. These beliefs can then be reinforced or not
by sensor measurements.

The localization problems are usually divided consid-
ering different aspects that are not equally difficult o
solve. There are four main aspects to consider [4]:
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A. Local versus global localization

This characterizes the problem by the type of knowl-

edge available initially and at run-time. Three differ-
ent problems are distinguished, each with increasing
difficulty.

e Position tracking. Position tracking assumes
that the initial pogse of the robot is known. That
means that the localization algorithm has to esti-
mate the new pose based on the last one, which
usually has a small error that can be accommo-
dated in the model with good results.

¢ Global localization. In this case, the initial pose
is unknown. The robot is placed somewhere in
the environment and thus no assumptions on the
limits of the pose error can be made. Global lo-
calization includes the position tracking problem.

¢ Kidnapped robot problem. This is a variant of
global localization with an added difficulty: dur-
ing operation, the robot can be kidnapped and
teleported to other location. The robot might be-
lieve that it knows where it is while it does not,
leading to subsequent wrong pose estimations due
to false initial pose knowledge. This leads to a
new question of how can the pose estimation be
validated and how can a wrong pose be detected.
In the global localization problem, this question is
not relevant, as the robot knows that it does not
know where it is.

B. Static versus dynamic environments

The environment dynamics also causes a substantial
impact on localization difficulty. The environment is
typically classified in two classes.

e Static environment. In this kind of environ-
ments, the robot is the only element with motion,
meaning the only state variable is the pose of the
robot. All the other objects in the environment
remain at the same location forever.

e Dynamic environment. These environments
have objects other than the robot whose position
and configuration may change over time. Some
examples of more significant changes are people,
movable furniture, doors, or even light conditions
(daylight, night).

Working with dynamic environments creates more dif-
ficulties than working with static ones. There are two
main approaches for accommodating dynamics: one is
to include the dynamic entities in the model state vec-
tor. This approach also maps the environment, but it
comes with a high burden of computational and model
complexity. Another approach is to filter the sensor
data to correct the damage caused by unmodeled dy-
namics [4].

C. Passive versus active approaches

This aspect of localization problem characterization
pertains to the fact of whether or not the localization
algorithm can influence the control over the robot.
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e Passive localization. The localization module
only observes as the robot operates. The robot is
controlled by other means, usually performing the
tasks it is assigned to.

e Active localization. On active approaches, the
localization algorithms have direct influence aver
the robot’s control and attempt to move it to a
more favorable position to reduce the error and
obtain a better pose.

Active approaches tend to be easier to deal with than
passive ones and tipically yield better results as well.
An example is a robot located in a symmetric corridor
where the global localization can easily enter an am-
biguity state (Fig. 1). The local symmetry makes it
impossible to localize the robot while in the corridor.
It will only be able to eliminate the ambiguity and de-
termine its pose if it moves into a room (or if it gains
access to some other disambiguation source, like a true
heading, for instance).
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Fig. 1 - Example situation with two possible ambiguous poses.
The robot would need extra information or to enter one of the
rooms to determine its true location. Image from [4].

However, in practice, an active localization technique
tends to be insufficient if applied on its own. Most of
the times, the robot has to be able to execute other
tasks besides localization. A common approach is to
merge the localization goals with the task goals. An
example would be a robot moving from a point A to B
taking a longer path, but ensuring that the robot kept
itself well localized along all the way.

D. Single-robot versus multi-robot

The fourth aspect of the localization problem is re-
lated to the number of robots involved

e Single-robot. This is the most typically stud-
ied approach, dealing with only one robot. It is
convenient that all the data comes from the same
platform, and no communication issues have to be
dealt with.

e Multi-robot. When working with a team of
robots, the problem can be addressed as several
single-robot localization problems and be solved
in the same manner. However, if the robots have
the ability to detect each other, one robot’s beliefs
can be used to validate other robot’s beliefs if the
relative location of both is available.
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I11. LOCALIZATION ALGORITHMS

As localization is a probabilistic problem, most of the

algorithms for mobile robot localization are bagsed on
Bayesian rules. Some algorithms will be briefly pre-
sented in this section.

A. Markov locelization

Markov localization is the straightforward application

of a Bayes filter to the localization problem. Tt requires
a map as input for the measurement model and often
the map is also incorporated in the motion model. Tt
mainly transforms a probabilistic belief at time i-7 into
a belief at time ¢. Being a probabilistic belief at each
instant, it maintains the probability for every possible
pose on the state space.

Markov localization addresses the global localization
problem, tracking problem and the kidnapped robot
problem in static environments.

Consider a scenario of a hallway with three identical
doors and the robot is only able to move along the hall-
way without rotating. Tt is a one-dimensional example

(Fig. 2).

Fig. 2 - One-dimensional scenario for robot localization. Image
from [4]

Figure 3 illustrates this one-dimensional example (pre-

sented in [4]), where a robot moves along a corridor
with three identical doors. Tn an initial state, the be-
lief bel(z) = bel(zy) is uniform for all poses along the
corridor (Fig. 3.(a)).

In Fig. 3.(b), the robot queries its sensors (modeled
by a function p(z|z)) and detects that it is in front of
a door. The belief is updated with that information,
resulting in the belief in the same image.

In a third moment, the robot moves right, and the
model convolution results in the belief depicted in
Fig. 3.(c), flattened by the assumptions of the motion
model uncertainty.

A new sensor query is made in Fig. 3.(d) and the re-
sulting belief now has a well defined peak focused on
the correct pose. At this point, the robot is quite confi-
dent that it has localized itself. Figure 3.(e) illustrates
the robot’s belief after a new move to the right.

This illustration refers to the global localization prob-
lem. In a position tracking problem, the initial posi-
tion would be known and thus the initial state would
be something like the belief in Fig. 3.(d).

A Markov localization approach hag been explored in
robotic museum tour guides [6]. The work described
in [6] was tailored for dynamic environments and was
developed to support both global localization and kid-
napped robot problems (recovery from location fail-
ures).
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Fig. 3 - Tllustration of Markov localization algorithm. In each
picture, the belief bel(z) function is represented. In (b) and (d),
also the observation model p(z:|z:) is represented, describing the
probability of observing a door at the different locations in the
hallway. Image from [4].

B. Kalman filter localization

Kalman filter localization typically requires that the
starting position of the robot is known, thus, in its
essence, it addresses the position tracking problem.
Contrary to Markov localization, it maintains a be-
lief bel(x:) that is a Gaussian function and thus can be
represented by its mean and covariance.

The Kalman filter is a two step process:

First a forecast of the output is made based on the lin-
ear evolution of the noisy dynamic system, an a priori
estimate.

Then, on a second phase, a measurement based on
the sensors is combined with the forecast in order to
produce a final a posteriori probabilistic estimate of
the pose [7]. If no sensor readings are available, the
belief generated by the motion model tends to degrade,
because it relies only on the forecasts of the pose until
a new measure can help correct it.

Kalman filter is based on linear dynamical systems
discretized in time. It is assumed that both the Sys-
tem and the measures are affected by White Guaussian
noise, meaning the noise is not correlated in time, and
thus we can assume that at each discrete time, the
noise affecting the system and measures are indepen-
dent of past or future values.

In the corridor example of [4] (depicted in Fig. 4), it is
assumed that the map is represented by a collection of
features (where each one is identified by a correspon-
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dence variable) and each feature identifier is known,
thus, the doors of the hallway have now a unique cor-
respondence voriable (1, 2 and 3). The need for these
constraings is that the filter works on the assumption
of Gaussian measuremnents and for this requirement to
be met, each door must be unequivocally identified by
the observation modet p(z|z} .

A second assumption, needed for the algorithm, is
that the initial position is relatively well known (the
initial belief bel(xq) is represented by the Gaussian dis-
tribution shown in Fig. 4.(a), near door 1 and with a
Gaussian uncertainty).

As the robot moves right {Fig. 4.(b)), its belief is con-
volved with the Gaussian motion model, resulting in
an increase of the Gaussian width, as uncertainty in-
creases. In another instant, the robot detects that it
is in front of door number 2. In Fig. 4.{c), the ob-
servation function p(z|z) is used to update the esti-
mated pose, and the resulting belief is presented in the
same picture. The variance of the resulting belief is
smaller than both the previous belief and measurement
variances, thus integrating two independent estimates
should make the robot more certain than each of the
estimations separately.

hel(x)

Fig. 4 - Ilustration of Kalman filter localization algorithm. In
each picture, the belief bel(z) function is represented. In {c) also
the observation model p(z:|x:) is represented. Al densities are
represented by uni-modal Gaussians. Image from [4].

As the robot continues to move along the hallway,
the uncertainty in its pose increases again, since the
filter motion model continues to incorporate the system
uncertainty in the belief (Fig. 4.(d)).

When the correspondence variables are unknown, the
identity of the landmarks has to be determined dur-
ing localization. One of the most simple and used
strategies is maximum likelihood {8] correspondence,
in which one first determines the most likely value of
the correspondence variable and then applies the fil-
ter as described, using the estimated correspondence
as granted. With this kind of approximations, the
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Kalman filter localization can be extended for the
global! localization problem.

There are a number of works that try to use Kalman
filters in various ways, to somehow improve it so It
can be adapted for some particular situations. One
of them, a combination of Bayesian estimation with
Kalman filtering for localization purposes is presented
in [9], allowing a better performance of the system by
relaxing the Kalman assumptions about the meagure-
ments noise.

A work described in [10] applies the Kalman filter ba-
sis divided in several smaller communication Kalman
filters. Each of the robots has its own filter to process
the data from its own sensors. Information exchange
between two individual filters is only necessary when
two robots detect each other and measure their relative
position. In this case, a more comprehensive Kalman
filter is used, capable of taking the new information
into account.

C. Monte Corlo localization (MCL)

This is another popular algorithm for localization,
which represents the belief bel(z:) by a set of M par-
ticles X; = wgl], mt ye [M]. It is the application of a
particle filter to the loca,lization problem. The initial
belief bel(xy) is obtained by randomly generating M
pose particles from the prior distribution p(zo) (usu-
ally uniformly over the entire pose space) and asmgmng
each of them a uniform importance factor of M %

This algorithm in its essence can address both pOSlthIl
tracking and global localization problems.

Figure 5 illustrates the MCL in the one-dimensional
hallway example. The initial belief is a set of random
pose particles uniformly generated for the entire pose
space (Fig. 5.(a)). When the sensors are queried and a
door is sensed, the MCL algorithm analyses each parti-
cle and assigns it an importance factor considering the
measurement mode!, which takes into account the es-
timated particle, the current observation and the map.
In Fig. 5.(b), the resulting particle set is shown, with
the height of the particle representing its importance
factor. At this stage, the set of particles is identical to
Fig. 5.(a), being the importance the only modification.
This importance is then used for the re-sampling pro-
cess, that, based on the set of Fig. 5.(b), generates new
partictes more concentrated around the most likely po-
sitions, but again, all with the same importance factor.
Figure 5.(c) shows the new set of particles, also after
incorporating a motion.

Again, the new measurement assigns non-uniform im-
portance weights to the particle set, as depicted in
Fig. 5.(d). At this point, most of the cumulative prob-
ability mass is centered on the second door, which is
also the most likely location {and the cotrect one).

A new motion leads to a new re-sampling phase and
a new set is generated according to the motion model
(Fig. 5.(e)). Each motion step without measurements
tends to disperse the particles, but each motion step
merged with measurements tends to concentrate the
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Fig. 5 - Nlustration of Monte Carlo localization algorithm. In
each picture, the belief bel{x) function is represented. In (b) and
(d} also the observation model p(z;|z:)} is represented. Image
from [4].

particles around the correct pose.

MCL has the advantage of not being bound to as-
sumptions about the systemn and measurement noise
(as is the case of Kalman filter, which assumes that the
hoise is Gaussian). The accuracy of the estimated pose
increases with the size of the particle set M, although
this parameter imposes a trade off between accuracy
and computational weight.

A common extension to the MCL algorithm is the
addition of an heuristic to add random particles to the
particle set. This is done because the particles at places
other than the most likely pose gradually disappear.
Since at some point they only “survive” near a single
pose, there is no way to recover if this pose is incorrect.
This kind of approach enables the MCL to solve the
kidnapped robot problem.

The use of a Monte Carlo localization algorithm with
a variable number of particles is presented in [11], in
an attempt to get a good (accuracy / time and compu-
tational cost) balance of MCL, for use in a demanding
environment like robotic soccer.

Montesano et al. [12] present a study of how vision-
based bearings and motion can be used for pairs of
robots to localize themselves using each other as land-
marks. They try an extended version of Kalman filter,
a particle filter approach (MCL) and a combination
of both. They observed that the particle Altering ap-
proach tends to be more robust than the Kalman filter
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to estimate the initial location. Once the filters con-
verge to the true location, all methods provide similar
results. The combination of both seems to provide the
best compromise between robustness and efficiency.
Gutmann and Fox [13] present a comparison between
Kaiman filtering, Markov localization, Monte Carlo lo-
calization and combinations of them in a landmark
based scenario, and present some resuits and comments
on several strong and weak points of each approach. In
a general way, the combined methods yield better re-
sults than the standard versions.

D. Tribots localization

This algorithm was created in the scope of robotic
soccer and is based on guided update steps modeling
the localization problem as an error minimization task
[14]. However, its application can be more general (an
exarnple is the work presented in [15]).

It relies on a Look Up Table (LUT) built over the
map which, for each position, keeps the minimum dis-
tance to the closer landmark. The algorithm starts by
assuming a given pose as true and estimates the er-
ror between the measured distances (distances of the
considered pose to the landmarks represented hy the
observation model) and the LUT distances (known dis-
tances of each position to the defined map landmarks).
The objective is to maximize the fitness (minimize the
error} of the match between the detected landmarks
and the known landmarks {from the map) by gradu-
ally correcting the estimation. The pose that will be
tested in the next step of the process is given by ap-
plying a displacement to the current pose based on
the gradient of the current error, using an algorithm
named RPROP [16].

Consider the example of its main application, local-
ization of a soccer robot. Thedandmarks used on the
soccer field are the white lines, which are known a pri-
ori, as they are defined in the rules. The LUT of the
map is then based on a representation of the distance
of each position to the closer line {Fig. €).

st

Fig. 6 - Illustration of a LUT map used by the algorithm, Darker
areas indicate positions where the distance to the nearest line is
large, while brighter areas indicate positions with smaller dis-
tances.

In this case, the sensor information is visual. At a
given instant, the robot sees a set of points over the
field lines. These points (with known distance and po-
sition relatively to the robot itself) are the landmarks
used in the minimization error function. With a set of
line points as in Fig. 7.a), the error function estimates
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a position by matching the distance to each line that
is measured by the robot with the known LUT dis-
tances of that supposed position to the lines. Fig. 7.b)
plots the error function as gray levels, being dark areas
the zones where the error is larger and brighter areas
the zones of smaller error. The most probable position
estimate (less error) is indicated by the black circle.

- ?
L

a) b)

Fig. 7 - Left a): The set of line points (gray circles) and the
field markings (solid lines) for a localization estimate. The esti-
mated pose for the robot is indicated by the “R” object; Right
b): A gray level plot of the error function considering the pose
estimation of the left-hand figure. Dark areas indicate positions
with large error, bright areas indicate positions with small errors.
Tmage from [14].

Filliat et al. [17] presents a review of localization
strategies for map-based navigation, as well as several
mapping methodologies.

IV. SIMULTANEOUS LOCALIZATION AND MAPPING
(SLAM)

In plain localization problems, a map of the environ-

ment is available for the robot to observe and discover
where it is. In SLAM problems, neither the map of
the environment or the robot pose are available. In
this case, only measurements 21 and controls u1.;. It
is a significantly more difficult problem as the robot
hag to acquire a map of the environment while gimul-
taneously localizing itself within this map.

Mapping is the way the robot builds its representation
of the world, its map. Typically, the construction of
these maps are based on two methods [18]:

Metric or grid-based mapping. Itisa representa-
tion based on the measures of the space they map.
In an indoot metric map, the information included
could be the length of wall sections, widths of hall-
ways, distances between intersections, and so on
(Fig. 8). With this approach, the robot has to be
equipped with sensors capable of estimating the
distance to each detected object and it is usual to
represent the mapped space with an evenly spaced
grid. This is a quantitative approach and a path
plan that could be applied over this kind of map
could be “advance for X meters, turn 6 degrees
and advance other Y meters”;
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Fig. 8 - Illustration of a metric or grid-based map. All the known
environment objects have known measures and positions.

Topological mapping. The representation of the
space is not based on precise measurements but
rather on landmarks (Fig. 9). In an indoor topo-
logical map, the information could include doors,
hallway intersections, or T-junctions of hallways.
To build a map based on landmarks, the robot
would need to be equipped with sensors that could
identify them, typically vision systems. This is the
most intuitive approach for humans, as we typi-
cally use path plans like “go straight till you see
this landmark, turn left after it and follow until
you reach that landmark”;

0
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Fig. 9 - Hlustration of a landmark map. The known landmarks
are positioned relatively to each other, but no precise measures
are known, navigation is only possible by sighting of the land-
marks.

From a probabilistic perspective, the SLAM problem
has two main forms.

One is known as online SLAM, which consists of esti-
mating the posterior probability over the current pose
along with the map: p(zs, m|z1.¢, u1:). 1t involves the
estimation of the variables that persist at time t. Tt
is common that online SLAM algorithms discard past
measurements and controls once they have been pro-
cessed.
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The other main form is full SLAM, which consists
of estimating the posterior over the entire path z.
along with the map, instead of just the current pose
T p(ml:t:mlzlztrul:t)-

Historically, the earliest SLAM algorithm is based
on the extended Kalman filter (EKF) [4]. The EKF
SLAM algorithm applies the EKF for online SLAM by
using maximum likelihood data association. It is an
approach that imposes a number of limiting asswmnp-
tions: (1) the map has to be composed of point land-
marks, preferably with as little ambiguity as possible,
which may require significant attention to feature de-
tectors; (2) as other Kalman algorithms, the assump-
tion of Gaussian noise for both the robot motion and
perception models needs to be met (or acceptable); (3)
the algorithm can only process positive sightings of
landmarks, no processing can be made based on the
absence of landmarks.

Another example of approach for SLAM presented in
[4] is the Extended Information Form (EIF) algorithm.
This EIF SLAM algorithm has in common with EKF
SLAM the fact that it represents the posterior estima-
tion by a Gaussian. However, unlike EKF SLAM, EIF
SLAM solves the full SLAM problem. Thus, instead
of defining the posteriors over the map and the most
recent pose, it defines the posteriors over the map and
the entire robot path. The EKF SLAM is therefore
an incremental approach, it enables the robot to up-
date its map without memory concerns, while the EIF
SLAM is best suited for problems where we want a
map from a fixed set size and we can afford to hold the
data in memory up to the time where the map is built.

Several other algorithms are currently available, like
fastSLAM [19], Postponement [20], relative map rep-
resentations 16, submap methods 17, Schmidt-Kalman
filter based 19, Covariance Intersection (CI) based
methods 10, and decorrelation methods 11

In [21] a distributed extended version of Kalman fil-
ter is used for cooperative multi-robot localization and
mapping in outdoor environments, providing better es-
timates for each robot localization based on relative
information of other robots poses as well as increased
mapping capabilities since by sharing the own informa-
tion, each robot can get unknown pieces of the map to
fit into its own map and, in case of overlapping pieces,
merge the information to get better estimates.

Other algorithms and approaches for multi-robot lo-
calization and mapping are presented in [22], [23] and
24]. An application of multi-robot localization but ap-
plied to object localization, rather than self localization
is presented in [25].

In [26], the authors propose a hybrid approach on
SLAM, with several filters implementing their own
SLAM algorithm and with the ability of exchanging
information between them, before generating the out-
put.

315

V. FINAL REMARKS

The localization problem for mobile robots is a critical
feature that is generally not trivial to solve. Further-
more, most mobile robotics applications have specific
functions to fulfill, meaning that the localization is one
of the needed features but not the objective, and thus
have to be accomplished effectively independent of the
conditions of the robot surroundings and movement.

Several kinds of approaches exist for addressing this
problem, all of them with their own drawbacks. Almost
every applications need to make compromises when
choosing a localization technique.

When there is not the possibility to provide a map
to the robot, the problem escalates to a Simultane-
ous Localization And Mapping, which is an even more
challenging issue.

In this paper, some key aspects of these problems have
been presented, as well as brief descriptions of some of
the most used techniques.
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