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A survey on Machine Learning in Mobile Robotics

Joao Cunha

Abstract — Learning is a prerequisite for intelligent
behaviour. It is no surprise that Machine Learn-
ing, as one the most important fields of Artificial
Intelligence, is becoming an increasingly hot-topic
in Robotics. Machine Learning has several benefits,
from enabling the use of historical data to improve
future decisions, to solving problems that are diffi-
cult by hand-coding the solutions or to allow adap-
tive behaviours in highly dynamic environments
such as learning individual preferences in human-
Recent ad-
vances in algorithms and the increasing computa-

computer interaction environments.

tional power available at reduced size and weight,
enabled the application of Machine Learning to the
field of mobile robotics. This report presents an
overview of the state of the art of the different
applications of Machine Learning methodologies in
mobile robotics.

I. INTRODUCTION

Given the high degree of multidisciplinarity in the field
of Robotics, programming a robot poses several chal-
lenges. Firstly there are no high-level programming
languages to aid the development of robust algorithms.
Secondly the robot sensors and actuators are complex
to model. Thirdly robots have been steadily moving
towards more unstructured environments where robot
programming becomes a arduous task.

The aforementioned are just a small set of the reasons
why researchers have been working on enabling robots
to learn how to perform tasks by themselves. Thus the
area of Robot Learning is the application of Machine
Learning methodologies to the field of Robotics.

According to [1] the definition of Machine Learning is:
“Any computer program that improves its performance
at some task or class of tasks through experience.”

Therefore every Machine Learning problem is charac-
terized by:

e a task or a class of tasks (ex: playing chess);

e a performance measure (ex:percentage of games
won);

e experience (ex:playing practice games).

There have been several different machine learning
methodologies developed over the years, however all
are characterized in terms of supervised and unsuper-
vised learning. These two classes differ in the sense
that in the former there is a “teacher” supplying the
learning program with training data, while the latter
has significantly reduced or nonexistent feedback on
the learning task.

Although different Machine Learning methodologies
have been successfully applied at solving complex and
non-trivial problems in the field of Robotics, such as
estimation of sensor noise [2], environment representa-
tions [3] [4], or control policies (5], making robots learn
is still an open challenge. Factors as sensors and ac-
tuators noise impose difficulties in learning problems.
Additionally [1] describes learning as a search problem
of finding a policy that best fits the training examples,
hence high dimensional or continuous state spaces are
prohibitive factors in learning problems. Overfitting
the training data is also a concern in Machine Learn-
ing since the learning program can demonstrate very
high performance in the presence of training examples
while failing to generalize a policy for future examples.

The remainder of this paper is structured as follows.
Section II presents the Credit Assignment Problem the
basic problem of any learning problem. Section III de-
scribes some of the most important learning paradigms
applied to the field of Robotics, along with some il-
lustrative examples. Finally section IV presents the
conclusions.

1I. THE CREDIT ASSIGNMENT PROBLEM

Robot Learning is a problem of learning a policy =
from a set of sensory states S to a set of responses E.
Learning a policy requires solving three credit assign-
ment problems [6]. The temporal credit assignment
involves giving credit or blame to a given response, in
a sequence of responses, for a good or bad outcome.
The structural credit assignment determines the range
of sensor values that yield the same outcome. Finally
the task credit assignment generalizes a sequence of
responses to perform other similar tasks.

The various learning paradigms, presented in the next
section, are characterized by solving each credit assign-
ment problem in a different manner.

III. LEARNING PARADIGMS

This section presents four different Machine Learning
paradigms that have been successfully applied in field
of Robotics to solve various tasks.

A. Inductive Concept Learning

The first paradigm presented is Inductive Concept
Learning. In this paradigm there is a teacher providing
training data along with the classification of the same
data. Therefore this is a supervised paradigm where
the temporal credit assignment problem is solved by
the teacher. The learning problem is then reduced to
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inferring which values from the attributes of the train-
ing data actually affect the value of the classification.
Inductive Concept Learning is a well known paradigm
not only in Robotics but in Machine Learning in gen-
eral. Hence various different methodologies have been
developed. Of the most important methods Version
Spaces, Decision Trees and Neural Networks are of no-
tice. In particular Decision Trees and Neural Networks
have been successfully applied in Robotics for their
ability to cope with uncertainty and noisy data.

An additional concept very important in learning in
general and in Inductive Concept Learning in partic-
ular is the ability to generalize for unseen data. This
is known as inductive bias [7], in the sense that the
learner is provided a-priori assumptions on the target
policy. An example of inductive bias used in Machine
Learning is Occam’s Razor.

A.1 Examples

There are a variety of examples of the application of
Inductive Concept Learning in the field of Robotics,
some dating more than 20 years. In fact as early as
1988, Pomerleau [8] was able to teach an autonomous
car to drive in two-lane highways by training a neural
network from previously captured images of a driven
car. Such Learning from Demonstration (LfD) method
was applied in the 2005 DARPA Grand Challenge win-
ner Stanford car Stanley to perform highway [9] and
car lot [10] navigation. A different application of in-
ductive concept learning is present in [11] where the
Sony AIBO platform was able to determine entangled
or stuck status and even the type of surface it was
walking on based on accelerometer data.

Fig. 1 - The Stanford car Stanley, adapted from [12]

B. Explanation Based Learning

Explanation Based Learning is another supervised
learning paradigm. However, in Explanation Based
Learning the teacher doesn’t provide a classification
along with the data. Instead provides a domain the-
ory of how the training examples are consistent with
the target policy. Thus not only the temporal credit
assignment but also the structural credit assignment
problems are solved by the teacher.

The domain theory can be provided in various forms,
from logic rules to neural networks. The domain theory
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can be viewed as an a priori knowledge of the task to
be perform, and thus allows to speedup the search over
the space of possible hypotheses.

B.1 Ezamples

Explanation Based Learning was a hot-topic in 1990
decade, where computational power was scarce and the
domain theory was highly regarded as it enabled to
speedup the learning process when compared to other
paradigms at the time. However, the increased require-
ment is currently a derogatory factor when opposed to
other learning algorithms which require less a priori
requirements.

Nonetheless, [13] presents a remarkable example of an
application Explanation Based Learning. In this case
the domain theory is a neural network modelling each
action of the robot. Reported results show that in
10 minutes the robot learned to navigate towards a
landmark in an office environment.

C. Puvolutionary Learning

Evolutionary Learning is a very distinct learning
paradigm since it is not inspired on human reasoning
but is a close analogy of biological evolution [14].

In Evolutionary Learning, the learner is only provided
with a fitness function and a target measure. Hence
this paradigm is considered a unsupervised learning
paradigm. The learner searches for the optimal policy
from an initial random set of hypotheses. According
to the provided fitness function, the most fit individ-
uals of the population are chosen to generate the fol-
lowing generation. While some members pass intact
to the following generation (reproduction) others are
combined with each other to produce new offspring
(crossover). Aside from the genetic operators of repro-
duction and crossover, some elements of the population
maybe suffer changes resulting in different individuals
(mutation).

Thus Evolutionary Learning searches for the optimal
policy through search space of possible hypotheses by
generating variants of the best current hypotheses.

There are two major variants of Evolutionary Learn-
ing: Genetic Algorithms and Genetic Programming,.
The basic difference is that in Genetic Algorithms hy-
potheses are encoded in strings while in Genetic Pro-
gramming the hypotheses are encoded in computer
programs.

C.1 Ezamples

Examples of Evolutionary Learning in the field of
Robotics can be found in gait learning such as in [15]
where the gait of a biped simulated humanoid was ob-
tained using Genetic Algorithms.

Also of notice is one of the driving forces of Evolu-
tionary Robotics, Hod Lipson, who focuses on apply-
ing Evolutionary Learning not only to robot controllers
(brain) but has also applied Evolutionary Learning
to the robot hardware (body) achieving evolved mor-
phologies from initial simple robots [16].
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D. Reinforcement Learning

The last learning paradigm presented in this paper is
Reinforcement Learning [17].

The basic framework of Reinforcement Learning is a
Markov Decision Process (MDP). MDP are character-
ized by a set of states S, a set of actions A, a state
transition function 8 : S x A — S and an immediate
reward function 7 : § x A — R. A fundamental char-
acteristic of MDPs is that a state s only depends on a
finite number of past states.

The learning problem is to find a policy = : S — A
which produces the greatest cumulative reward over
time, u(s). The greatest cumulative reward gained in
a given state is given by u(s) = Y o 7'r, Where vy is a
discount factor of the delayed rewards in the future.

Reinforcement Learning methodologies are impacted
by factors such as delayed rewards, since the robot
might only receive a positive reward when it reaches
the goal state, what may take some time to achieve. On
the other hand while learning the robot must choose
between exploiting a previously learned policy or to ex-
plore unknown states and actions. Finally, the robot
sensors may not be enough to observe the entire sur-
rounding environment.

An optimal policy is then a policy that for a given
state s chooses the action a that maximizes the imme-
diate reward of applying a in state s plus the cumula-
tive reward of the successor state §(s,a). This policy
is given by m(s) = argmax, [r(s, a) + yu(3(s, a))]-
Hence a robot with the perfect knowledge of the
state transition and the immediate reward function can
determine the optimal policy by applying the value-
iteration algorithm which is proved to converge to the
optimal value.

Here we assumed a deterministic state tran-
sition function. However the state transition
function is commonly probabilistic given the
sensors and effectors errors and noise. Thus
the optimal policy can be extended to accom-
modate probabilistic state transitions, w(s) =

argmax, [E [r(s,0)] + 7D sress,a) (SIS a)u(s’)] .
However having a complete and perfect knowledge of
the state transition function is often an unrealistic sce-
nario, compared to having a perfect domain theory in
explanation based learning.

To overcome this limitation a model-free Rein-
forcement Learning methodology is usually used,
Q Learning. Q Learning is based on learn-
ing the Q function, Q(s,a) which represents
the maximum discounted cumulative reward ob-
tained from state s and applying action a [1],

Q) = [Blr(s,a)] +7Suessm P18 auls")]
On the other hand u(s) = mazyQ(s,a’) which
rewriting the previous equation yields Q(s,a) =
[E [r(5,0)] + 7 L wess,ay P(5'15:2)Q(S, a’)] :

To learn the value of the Q function the robot starts at
a random initial state s and applies an action a while
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observing the resulting state s’ and the obtained re-
ward r. Hence Q-Learning can be viewed as a robot
acting randomly upon the environment and analysing
the outcome of its actions. This is usually done us-
ing a table with an entry for each state-action pair.
This is major constraint since the robot estimation of
the Q function will only converge is every pair state-
action is visited sufficient times. This is an unrealistic
assumption for very large dimensional or continuous
spaces. On the other hand the learned policies would
not be capable of generalizing to unseen examples. An
alternative approach is to use neural-networks instead
of explicit tables, in what is known as neural Q func-
tion. While this alternative has advantages and has
been successfully applied in various robotic systems,
classic algorithms for training neural networks to ac-
commodate a new pair state-action, may change the
Q estimates for other state-action pairs. This fact af-
fects the convergence towards the optimal value and
explains the large learning times and several thousand
experiences needed to achieve a good policy.

However variant algorithms were proposed in order to
minimize the number of training examples required.
Of notice is the method Neural Fitted Q Iteration [18]
which stores the previous training examples as tuples
s,a,8',r that are considered when the neural network
is updated for new experience data. This method is
reported to be able to achieve a close to optimal policy
in just a few hundreds examples.

Reinforcement Learning is very important in robotics
as a framework for autonomous learning given the very
few requirements when compared to other paradigms.
Thus Reinforcement Learning is an unsupervised learn-
ing paradigm.

D.1 Ezxamples

As mentioned before Reinforcement Learning algo-
rithms have been widely used in the field of Robotics
with great success. One special application of Rein-
forcement Learning is robot control.

One example of such application is a classical control
problem, the inverted pendulum problem. Riedmiller
[5] was able to balance a single and double inverted
pendulum using only Reinforcement Learning.

R

Fig: 2 - The inverted pendulum system used in [5].
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A prolific environment for Reinforcement applications
is the RoboCup robotic soccer competitions which have
numerous examples of Reinforcement Learning. For
instance tasks from low-level control, such as motor
control, behaviours, such as ball interception and drib-
bling, to cooperation skills, such as attacking strategy
have all been solved using Reinforcement Learning [19)
51 [20].

Another example of Reinforcement Learning in par-
ticular in the RoboCup competitions can be seen in
the RoboCup Multi-Agent Special Interest Group site
[21] where it is shown that the vast majority of the
learning methods applied is Reinforcement Learning.
In particular the now extinct four legged league (4LL)
is a great example of the application of Reinforcement
Learning methods to complex-modeled systems such
as the Sony AIBO platform.

Fig. 3 - A game of the RoboCup Four Legged League, adapted
from [22].

IV. CONCLUSIONS

This paper presented an overview of Machine Learn-
ing applications in the Field of Robotics. Robot learn-
ing offers several advantages for developing robotic sys-
tems while replacing hand-coded methodologies which
assume the programmer has a perfect knowledge of the
system model in order to produce optimal algorithms.
This paper presented the different types of credit as-
signment problems that must be solved in Machine
Learning. Finally four different learning paradigms
applied to robot learning were presented. Two su-
pervised paradigms were presented: Inductive Concept
Learning and Explanation Based Learning, since they
require substancial feedback from a teacher to guide
the learning process, and two unsupervised learning
paradigms: Evolutionary Learning and Reinforcement
Learning, that require little to no feedback during the
learning process.
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