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Machine Learning for Biped Robot Locomotion

José Rosado

Resumo - O presente artigo apresenta o estado da arte na
aplicacio de conceitos relacionados com o tema da
aprendizagem automatica e o seu potencial na aplicagfio em
locomo¢io de robdés bipedes.Usando uma abordagem
bottom-up, o artigo comecga por introduzir conceitos sobre
aprendizagem automatica, o seu uso e o seu enquadramento
na area da robética. Seguidamente, é feito um estudo sobre
métodos aplicados com sucesso na robética. Na parte final
focamo-nos na problematica da locomocdo bipede em robds
humanodides e possiveis solu¢des usando aprendizagem (e.g.,
aprendizagem por refor¢o). Siio apresentados alguns casos
de utilizagfio deste método e quais os resultados obtidos.

Abstract - This paper presents an overview of the state-of-
the art methods in machine learning and the potential of
application for biped robot locomotion. Adopting a bottom-
up structure, the paper starts by introducing the state of
machine learning, the fundamental questionsit addresses and
the current research topics. Second, machine learning
methods that have been successfully applied in robotic
systems are briefly discussed. Finally, the paper focuses on
problems of biped locomotion that can be solved by using
learning(e.g., reinforcement learning).  Case-studies
highlighting the implemented solutions help to understand
how a locomotion robot system can improveits control
strategy through experience.

I. INTRODUCTION

Over the past 60 years, computers have played an
important role in helping mankind in many tasks. Today,
we reached a point where computers are present in our
liveswithout ~we even notice it. Computers
outperformhumans in various tasks, like for example:

- Complex calculations: they can do it faster and without
mistakes.

- Repetitive tasks: humans have a trend to get bored and
make mistakes in repetitive tasks.

- Unfriendly environment tasks: tasks that require
working with dangerous chemicals ortasks where the
environment is hostile to humans can easily be made by
machines controlled by computers.

However, there are many situations where humans are far
ahead in terms of their performance capabilities. For
example, when something occurs in the environment that
was not expected, machines donot know how to react or
react very poorly. Instead, humans can react much faster
in a way that can avoid disaster. This is because humans

are able to do something much better that machines:
learning. Through their lives,humans evolve and learn
from different situations occurring in everyday life and
they are able topredict the effects oftheir actionsin the
environment and,inthis way,react accordingly. Inspired by
biology, several researcher projects areunderway to
develop machines that can learn the same way we do,
endowedwithcognitive and learning abilities.

The remainder of the paper is organised as follows:
Section II presents an overview of current state of
machine learning. Section III explores the application of
learning in several robotic domains. Section IV describes
the main advances of machine learning paradigms for
robot biped locomotion. Finally, Section V concludes the
paper and outline the perspectives of future research.

II. STATE OF MACHINE LEARNING

The concept of machine learning refers, usually, to the
changes in systems that automatically learn to recognize
complex patterns, to link perception, reasoning and action
processes, to make intelligent decisions, to predict
situations that may encounter, etc. Machine learning can
be achieved at different levels of complexity, much like
different scientific fields investigate learning processes in
biological systems [1-3]. In simple words, we may say
that machinesandcomputer programs “learn from
experience E with respect to some class of tasks 7 and
performance measure P, if its performance at tasks in 7, as
measured by P, improves with experience E” [1].

In general, three learning paradigms are considered in
literature: supervised, unsupervised and reinforcement
learning. Supervised learning is the taks of inferring a
function from a supervised set of training examples
consisting of an input object and a desired output value. It
has initially been successfully applied in classification and
prediction tasks, but is not brain-like. Unsupervised
learning is about understanding the world by mapping or
clustering given data according to some principles,
beingassociated with the cortex in the brain.
Reinforcement learning (RL) is a powerful method to
develop goal-directed action strategies where the system
learns behavioural reactions controlled by reward (trial-
and-error process). In fact, the mathematical model of RL
reflects the brain’s dopamine-based system by encoding
reward aspects of environment stimuli. Just like
reinforcement learning, many other mathematical models
induce various forms of learning with parallels in biology.



296

ELECTRONICA E TELECOMUNICAGOES, VOL. 5, N° 3, JUNHO 2011

Table I - Machine Learning Methods

Method name

Method Description

Decision tree learning

Uses a decision tree as predictive model to map observations about an item to conclusions
about the item’s target value.

Association rule learning

A method for discovering associations in large databases.

Artificial Neural
Networks

is a mathematical or computational model that tries to simulate the structure and functional
aspects of a biological neural network. It’s composed by a group of interconnected artificial
neurons.

Genetic programming

A evolutionary based algorithm that is inspired on the biological evolution and uses genetic
algorithms.

Support vector machines
(SVMs)

A set of related supervised learning methods used for classification and regression. Given a
set of training examples, each marked as belonging to one of two categories, an SVM
training algorithm builds a model that predicts whether a new example falls into one
category or the other.

Inductive logic program

An approach to rule learning using logic programming as a uniform representation for
examples, background knowledge, and hypotheses. Given an encoding of the known
background knowledge and a set of examples represented as a logical database of facts, an
ILP system will derive a hypothesized logic program which entails all the positive and none
of the negative examples.

A set of observations are assigned into a subset/cluster so that observations that are similar

Clustermg belong to the same cluster.
A probabilistic graphical model that represents a set of random variables and their
conditional independencies via a directed acyclic graph (DAG). For example, a Bayesian
Bayesian network network could represent the probabilistic relationships between diseases and symptoms.

Given symptoms, the network can be used to compute the probabilities of the presence of
various diseases.

Reinforcement learning

Concerned in how an agent ought to take actions in a environment in order to maximize an
reward it receives. For a right decision, the agent receives an positive reward;for a negative

decision the agent receives a negative reward.

Several methods and algorithms for machine learning
have been developed over time. Table I lists some of the
most used methods giving a brief description of each one.
A more complete overview can be found elsewhere [1-3].
From the point of view of application, there are many
examples where machine learning has been applied with
success:

« Speech recognition: the speech recognition accuracy is
greater if one trains the system, that trying to program it
by hand. A learning speech recognition system will be
able to adapt itself to the user, rather the opposite.

« Computer vision: many current vision systems, from
face recognition systems to systems that automatically
classify microscope images of cells use machine
learning algorithms. Again, accuracy is much better
than a fixed programmed system.

« Robot control: machine learning methods have been
successfully applied in the robotic area. Machine
learning can create better control methods for complex
robots with dynamics that can change over time or that
are nonlinear.

I1I. MACHINE LEARNING IN ROBOTICS

One of the areas where machine learning is most used is
in robotics. In this section, various examples will be
presented.

The first example comes from [4] where the authors
compare the efficiency of four machine learning
algorithms used to classify robotic soccer formations in
the Robocup contest. The Robocup contest is divided into
two main groups. The first group uses real robots with
different sizes and rules, while the second group uses only
computer simulations with the purpose to improve the
research in Al and other aspects. The simulation contest is
also divided into three groups: 2D simulation, 3D
simulation and Mixed Reality. The paper compares four
machine learning algorithms applied to the players of the
FC Portugal in the 2D simulation league, namely,
Artificial Neural Networks, Kernel Naive Bayes, K-
Nearest Neighbor and Support Vector Machine (SVM).
The authors proceed to the simulation of several
situations, using different databases. The obtained results
are presented in TABLE IL.
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Table II - Accuracy And Time Of Experience

[ Classifier SVM | NN 3-NN KNB
Accuracy(%) | 95,77 80,99 99,78 78,0

Data i 10773’
Base A Time 4821 | 5h18°16” . 1’14
Data | Accuracy(%) | 96,07 84,72 99,79 77,04
Base B Time 28°03 | 3n25°17” | 97267 1’13
Data Accuray(%) 10,25 46,69 9591 50,21
Base C Time 1h52723 | 5149 | 3’54 11>

From this results, the K-Nearest Neighbor presents the
best results. However, in different situations of games and
strategies, the best was SVM followed by K-NN, as the
results in TABLE IlIshow.

Table III - Accuracy and Time

Classifier SVM NN 3-NN KNB
Accuracy(%) 51,65 45,77 46,67 26,47
Time 4’58 21°11” 3’55 29

Another interesting example is given in [5]. In this article
the author analyses the applicability of several ML
methods in various robots discovery tasks, in the light of
the experience on the XPERO project (www.xpero.org).
As the author says, the scientific goal of XPERO is to
investigate the mechanisms of autonomous discovery
through experiments in an agent’s environment. In
XPERO, the experimental domain is the robot’s physical
world, and the subject of discovery are various
quantitative or qualitative laws in this world. Fig. 1 shows
the experiment and the parameters of the experiment
made. The experiment consisted of a mobile robot moving
in a plane with a simple object (a red block or ball). The
robot is equipped with a stereo vision which enables it to
detect the area in the image belonging to the object, the
distance to the object and the angle between the current
orientation of the robot and the angle at which the object
was observed. Further, the robot is aware of its actions,
that is, ismoves, expressed as the step distance in the
forward direction and the step angle, that is the change of
the robot current orientation. Several machine learning
algorithms were used, such as:

*Rule Learning using CN2;

* Induction of classification and regression trees;
* Equation Induction with GoldHorn;

* Learning qualitative models with QUIN;

* Learning qualitative models with Padé;

The most interesting results were obtained with the
learning of qualitative models, both with QUIN and Padg.

In [6], Ryo Saegusaet al. propose a method to speed up
the sensorimotor learning and coordination of autonomous
robots. In a complex autonomous robotic system, motor-
babbling-based sensorimotor learning is considered an
effective method to develop an internal model of the self-
body and the environment. However, this process requires
much time for computation and exploration.The authors
propose a model characterized by a function they call
“confidence” that is a measure of the reliability of the
state control. Fig. 2 shows the proposed learning system
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used to predict and control the state at the next time. To
better understand the variables, TasLe IV explains their
meaning.
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Fig. 1 - XPERO simple experiment[5]
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Fig. 2 - Proposed learning system[6]
Table IV - Variable Notation
notation variable
s measured sensory input
os* desired sensoty input change
u* desired motor control
il estimated motor control
u actuated motor control
&S estimated sensory input change

The “confidence” is based on the state control error given
by the following equation:

ey [t] = [P(s[e], Os[t]) — ult]i(1)

The learning procedure is divided into 2 stages called:
exploration and learning (Fig. 3). In the exploration stage,
the robot will generate joint movements in order to collect
learning samples and evaluates mapping functions
optimized in previous learning stages. In the learning
stage, the robot will optimize the mapping functions off-
line with the collected learning samples in the previous
stages. Motor behavior of the robot in the exploration
stage is generated using the “confidence” value as a
probability to chose the motor command. The learning
system is composed by a Multiple Layer Perceptron
(neural network).
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Fig. 3 - Learning strategy proposed by Ryo Sacgusaet al.[6]

Experimental results were made with an humanoid robot
called James. This is a fixed upper-body robotic platform
dedicated to vision-based manipulation studies. It is
composed by a 7 degree-of-freedom (DOF) arm with a
dexterous 9-DOF hand and a 7-DOF head (Fig. 4).

Fig. 4 - James robot[6]

Both active and passive sensorimotor learning were
performed for comparison. Fig. 5shows the evolution of
the state space confidence quantized as 8x8 pixel regions.
Light intensity in each region indicates the local
confidence value. From left to right the columns
correspond to the confidence maps of state prediction in
active learning, state control in active learning, state
prediction in passive mode and state control in passive
mode. From top to bottom, the number of cycles (0, 5, 10,
15 and 20). From the picture is evident that the active
learning is faster.

Fig. 5 - Temporal evolution of the space state confidence[6]
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IV.BIPED LOCOMOTION AND MACHINE LEARNING

Biological systems are the result of an evolutionary
process related with competition, survival and learning
inside a specific environment. Biped locomotion presents
several key problems, like for example[7]:

+ Non linear dynamics

 Multi variable dynamics
«Unstable nature of the dynamics

« Limited foot/ground interaction
+Discrete changes on the dynamics

It is the first three that make much more difficult to
implement a controller of a robotic biped system using
classical control theory. The mathematical model of the
system is very complex and it is described by nonlinear
high order differential equations. Several strategies can
be used to solve these potential problems, such asto
simplify the dynamical model, to ignore the effects of
friction and flexibility, and to minimize the impacts with
the ground. The interaction between the foot and the
ground is one of the key aspects in legged robots that
distinguish them from manipulators.

The degree of freedom established between the foot and
the ground is unilateral and, at the same time, the
moment applied around the foot must be limited to avoid
the complete rotation around the heel or toes. Another
characteristic is the dynamic change that occurs along the
walking cycle: during this process the system is
supported by one foot or by both, meaning there is a
change on the system’s dynamics. This is an advantages
that allow biped robots to walk in environments not
accessible to wheel-based mobile platforms, such as
climbing stairs. However, the problems mentioned before
contribute to make difficult the development of a simple
and robust control system for biped robots.

Being biped robots so hard to control, due to the
complexity of the system dynamics and non linearity of
the system, one solution is to introduce machine learning
methods. These methods do not simply may allow to
control a biped robot locomotion, but can also be used to
make the robot perform other tasks or walk in untrained
environments. In fact, for a robot to perform in natural
real-world environments, it must be able to adapt its
behaviour autonomously to unexpected challenges,
something too complex to be formulated or programmed
explicitly.

One successful method applied to biped locomotion is
reinforcement learning.  Salatianer al. [8] use
reinforcement learning together with a neural network
mechanism to modify the gait of a biped robot that must
walk on a sloping surface, without prior knowledge of its
inclination.

e
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Fig. 6 - The SD-2 robot structure[8]

Fig. 6 shows the structure of the robot used, called SD-2.
The robot has a total of nine links and eight joints, that
allow 4 DOF by leg. This robot has a particular curiosity,
that is the fact it has no knees. A pre-defined statically
stable gait for this robot is shown inFig. 7. Each step is
divide into 8 static configurations, called primitive
points(PP), and each PP is decomposed into a large
number of setpoints, with duration of 28ms, being the total
step duration 2000ms. The robot has 2 force sensors in
eachfoot(one in the toes, other in the heal), that allow to
compute the Center Of Gravity (COG). The dotted squares
in Fig. 7.represent the swinging foot and the big dots are
the projection of the COG.

Sagitas
Plage

Fig. 7 - Gait on a level surface for the SD-2[8]

The system is controlled by a neural controller
represented in Fig. 8. It’s composed by a memory that
stores previous learned gaits, an adaptive unit (AU)
responsible for modifying the joint trajectories and a
sensor unit. The AU is composed by a set of 4 neurons for
each joint, giving a total of 24 neurons (both top hip joints
are controlled by the same signal).
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Fig. 8 - Neural Controller for the SD-2[8]

The difference between the forces exerted at the toe and
the heel generate the reinforcement signal that trains the
neural network (Eq. (2)). The robot is stable, as long as
Af = Afpq, where Af,,; is the ideal force balance,
obtained by recording it when the robot walks on a level
surface and the gait is optimal.

Af = freet = fr0e(2)

The authors conducted several experiments and trainings
with several unknown slopes, where they prove that is
possible for a biped robot to walk adaptively on unknown
terrains using the neural network approach with an
unsupervised reinforcement learning.

Masa-aki Sato, Yutaka Nakamura and Shin Ishii propose
a Reinforcement Learning method for Central Pattern
Generators (CPG) in [9]. Neurobiological studies have
revealed that rhythmic motor patterns are controlled by
neural oscillators referred to as CPG [10]. The main
purpose of their paper is to study the use of reinforcement
learning for a CPG controller that generates stable
rhythmic movements. However, RL for biped locomotion
is very difficult, because the biped robot is very unstable
and the system has continuous state and action spaces with
a high degree of freedom. Standard RL methods, such as
temporal difference learning, Q-leaning and actor critic
methods are not suited for training the CPG and in order
to deal with this, the authors propose a new RL method
which they call the CPG-actor-critic method. Their
method consists in dividing the CPG into 2 modules, i.e.,
the basic CPG and the actor (Fig. 9). The method was
applied to a robot with a structure illustrated in Fig. 10
(top) and after about 5800 trials, the robot started to walk
Fig. 10 (bottom). Although the method workedproperly,
the learning process was rather unstable and it was
necessary to fine tune the weights of the mutual
connections among the CPG neurons that compose the
CPG controller.
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Fig. 10 - Structure of the robot (top) and results after 7000 episodes
(bottom)[9]

Later, Nakamura et al. [11] reinforce the idea of the
problems encountered in their previous article [9]. They
also assume that although the use of RL with the called
SARSAalgorithm[12] can be successful applied to various
Markov Decision Process (MDP), with finite state and
action spaces, they suffer from the “curse of
dimensionality”, called like this because when the number
of state and action spaces increases, it becomes very
difficult to use this method. So, they considered the use of
another method, called policy gradient RL. In this method,
the objective of the RL is to obtain the policy parameter
that maximizes the expected reward accumulation defined
by p(0) = Eg[X: vt tr(s(), u(t))], where y € [0,1] is 2
discount factor. The partial differential of p(8) with
respect to the policy parameter 6; is calculated by:

@) _ 1 dsduD(s,wii(s,1)Qs(s,1)()

wherey;(s,u) = %lnne (uls) and Qg(s,u) denotes the
i
action-value function (Q-function)[12].

To estimate the policy gradient (3), a linear approximator
of the Q-function: f3"(s,u) = X;¥i (s,u)w;, where w is
the parameter vector, is used. If
# = argmin, (Qp(s5,1) — 3’ (5,w)’, using  f3"(5,u)
instead of the true Q-function is achieved then Qg (s, %)
does not introduce any bias to the calculation of the policy
gradient[12] and the parameter W provides the natural
policy gradient.

The authors then conducted 2 experiments. The first one
had as objective to see if their method was able to obtain a
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CPG controller that could make the robot walk stably. For,
that weight parameters of the neural network were set to
random values, in which the robot could not walk (Fig.
11). The learning curve is show in Fig. 12. After about
7000 trials, the robot was less likely to fall down and Fig.
13 shows the gait pattern of the biped robot after 10000
learning trials.
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Fig. 12 - Learning curve[11]
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Fig. 13 - After learning[11]

In the second experiment, the CPG controller was tested
to see if it was able to acquire a policy that produced a
stable walk in various ground conditions. In this case, the
weight parameters were fine hand-tuned. Several
simulations were done, in which the ground surface was
set to be piece-wise linear and the gradient of each linear
piece was set randomly within a specific result. The
results of the learning are shown in Fig. 14. After about
2000 learning episodes, a good control was acquired.
Although the simulation results showed that the robot was
able to walk stable, some factors introduced bias to the
estimator W.
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Fig. 14 - Learning curve for rough ground[11]
Jun Morimoto et al. also present the use of reinforcement

learning together with a Poincare map in [13] and
[14].The articles use a five link robot (Fig. 15) in the




ELECTRONICA E TELECOMUNICAGOES, VOL. 5, N° 3, JUNHO 2011

simulations, based on a real robot with the specifications
of Table V.

Fig. 15 - Five link biped robot[13-14]

Table V - Physical Parameters of the five link robot model

trunk thigh shin
mass (kg) 2.0 0.64 0.15
length (m) 0.01 0.2 0.2

The authors divided the learning process in five stages:

1) A model that predicts the state of the biped a half
cycle ahead based on the current state and the foot
placement at touchdown. The model predicts the state at

Poincaré section in phase ¢ = 3?”(Fig. 16)based on the
system’s location at ¢ = g The same model is used to
predict the location at state ¢ =1ZT- using the location at

phase ¢ = 32—" This is done, because the state of the robot

drastically changes at the foot touchdown. The Poincaré
map is approximated by (4), with a parameter vector w™,

fon = f (xm, um; w™ ) (4)
2 2 2

Where the input state is denoted as x = (d, d), where d
denotes the horizontal distance between the stance foot
position and the body position (Fig. 17, left). The action of
the robot u = 0,.,is the target knee joint angle of the

swinging leg (Fig. 17).

Fig. 16 - Biped walking cycle[13-14]

2) Representation of biped walking trajectories: One
cycle of the biped walking is represented by 4 via points
for each joint (Fig. 16). Zero desired velocity and
acceleration are specified at each via point.
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3) Reward: the robot gets a reward if it successfully
continues on walking and gets punishment if it falls down.

Fig. 17 - Input stance and output of the controller[13-14]

4) Learning the value function: in reinforcement
learning, the learner tries to create a controller which
maximizes the expected total return. The authors denoted
the value function for the policy u

VE(x(@®) = Elr(t + 1) + yr(t + 2) + y2r(t + 3)+...1(5)
wherer(z) is the reward at time ¢ and y(0 <y < 1) is the
discount factor.

5) Learning policy for biped locomotion: A stochastic
policy is used:

(_(u(t)—A(x(t);wa))2>
u(u@®]x®) = Z=e m ©6)

whereA(x(t); w?) denotes the mean of the model,
represented by a function aproximator using w® as a
parameter vector. The variance ¢ is changed according to

the trial as o ===l 4 0.1 for Ny <100 and

o = 0.1 for Ny > 100.

The proposed method was applied to the 5 link simulated
robot with the results of Fig. 18.

In several articles presented later, where Morimoto was a
co-author [15-17] the subject of policy gradient method
combined with CPGs is brought again. This time, they go
beyond simulation and the real robot that served as model
in Fig. 15 is used with some interesting results.Fig.
19shows a photo of the real robot and Fig. 20 shows the
learning system used.

Fig. 18 - Results of the simulation: top - before learning; botom: after
learning.[13-14]

It is interesting to note that the CPG controller only
controls the hip joints and the knee joints are controlled by
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a state machine. This process allows the simplification of
the RL process, since the number of states and action
spaces remains lower.
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Fig. 20 - Learning system for the five link biped robot[15-17]
V. CONCLUSIONS

Machine learning has been a subject of study over the
last 50 years and has been applied in many fields.
Robotics are one of this fields, and in many areas it has
been very successful. Today, many high risk or repetitive
tasks are made by robots. Even on fun areas, robots are
each day more present: robots that play football against
each other(Robocup) and kids toys. One researcharea
gaining increased interest is humanoid robotics. Biped
locomotion robots are very interesting, because sooner or
later they will be used to replace or cooperate with
humans in various tasks, with improved performance.
Several techniques have been applied with some
successful to biped locomotion, being reinforcement
learning the most promising. However, there is still much
problems to solve since even the walking with success has
been reached in controlled environments and limited
conditions: walk a previous pre-planned path, follow a
line or walk in the direction of an object. These means
that we are still far from a biped robot that can walk
among us like other humans do.Another task still hard to
implement in robots is fine manipulation involving
interaction with the environment, such as touch or grasp.
At the same time, tasks like grabbing and pushing an
object on a table, like for example a cup with water,
without breaking it or spilling the water are not yet
implemented.
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