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Linear Invariant Systems Theory for Signal Enhancement
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Abstract — This paper discusses a linear time in-
variant (LTI) systems approach to signal enhance-
ment via projective subspace techniques. It pro-
vides closed form expressions for the frequency
response of data adaptive finite impulse response
eigenfilters. An illustrative example using speech
enhancement is also presented.

Resumo — Este artigo apresenta a aplicagao da teo-
ria de sistemas lineares invariantes no tempo (LTT)
na andlise de técnicas de sub-espago. A resposta em
frequéncia dos filtros resultantes da decomposicao
em valores singulares é obtida aplicando as propri-
edades dos sistemas LTI,

Keywords — Signal Enhancement, SVD, Subspace-
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I. INTRODUCTION

Signal enhancement via projective subspace tech-
niques is widely used in speech processing and biomed-
ical signal processing to improve noise-corrupted sig-
nals. Different notations or mathematical formalisms
are discussed in the literature [1], [2], [3], but singular
value decomposition (SVD) is common to all. A data-
derived trajectory matrix X is replaced by a low-rank
approximation X. From this low-rank matrix X an
enhanced version Z[k] of the original signal is then ob-
tained employing diagonal averaging [4]. A discussion
of these techniques in the frequency domain was given
by [5] where it was shown that signal enhancement
can be achieved by a bank of finite impulse response
filters arranged as parallel pairs of analysis-synthesis
filters. The proposed approach was formulated using
matrix algebra operations [5], [6], [1].In this work we
show that linear invariant system theory provides al-
ternative tools to derive such input-output relations.
Analytical expressions for the frequency response of
these filters will be given. In addition, the main filter
characteristics, i.e. causality and being zero-phase, are
deduced. The paper addresses the following three top-
ics: the meaning of SVD in terms of univariate time
series analysis; the filter bank interpretation and a few
illustrative examples using speech signals.

11. UNIVARIATE TIME-SERIES AND SVD

Singular value decomposition constitutes the main
tool to estimate subspace models for multidimensional
data sets. In multi-sensor signal processing, the data
vector is naturally formed with samples of different
sensors. However, projective subspace techniques can

also be applied to univariate time series by forming
vectors with sliding windows of the signal. This trans-
formation is called embedding the signal into the space
of time-delayed coordinates. Considering a segment
of a signal (z[1],[2],...,z[K]), the multidimensional
signal is obtained by xg. = (z[kl,...,z[k + N]),k =
1,...,M = K — N + 1. The lagged vectors lie in a
space of dimension N and constitute the rows of the
trajectory matrix

z{1] z[2) e z[N]
z[2) z{3] T{N +1]

X = :1,[3] :c[4] :z:[N'—}— 2] )
oM 2M41 ... alK)

Note that this matrix has identical entries along its
anti-diagonals, hence forms an Hankel matrix [1].
There are other alternatives to form the data matrix
via embedding the signal in an N — dimensional space
which yield a Toeplitz matrix. The latter has iden-
tical elements along its diagonals [2]. However, the
processing steps are the same, only adapted to cope
with the differences in data organization [7]. Following
that strategy, the univariate signal is organized into an
M x N matrix X whose SVD [8] allows to explain the
data set as a product of matrices X = UZVT | where
U and V are orthonormal matrices with dimension
M x M and N x N, respectively. The matrix X is an
M x N matrix with 7 < min(M, N) non-zero singular
values along the diagonal and zeros everywhere else.
The eigenvector matrices (U and V) result from an
eigenvalue decomposition of two symmetric and square
matrices computed from the data matrix. Assuming
that the vectors xg., k = 1,2..., M, represent the rows
of X, the two different square matrices are computed
in the following way:

e Matrix 8 = XTX is an N x N maltrix where each
entry represents the correlations between pairs of
entries of the data vectors. It is an outer product
matrix corresponding to the non-normalized cor-
relation matrix. If the data is centered, it is also
the non-normalized covariance matrix, also called
scatter matrix. Its eigenvalue decomposition reads

S =VAVT =vETEVT,

The matrix A is a diagonal matrix with at most
r < min(M, N) non-zero eigenvalues correspond-
ing to the square of the singular values. And the
eigenvector matrix V is orthonormal, e.g. VTV =
1, where I is the identity matrix.
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o Matrix K = XX7 is an M x M matrix where each
entry represents the dot product between pairs of
vectors of the data set (the rows of X). It is
known as kernel matrix or dot product matrix.
The eigenvalue decomposition of this matrix reads

K =UAUT = UxxTy?,

The matrix A is a diagonal matrix with at most
r < min(M, N) non-zero eigenvalues and UTU =
I is an orthonormal eigenvector matrix.

Orthogonal subspace models, like SVD or principal
component analysis (PCA}, are described solely by the
matrix V that defines an orthonormal basis vector ma-
trix of the N — dimensional space of the data [8]. A
low-rank approximation of the data matrix X can be
expressed as follows

X =XVPVT = YPVT (2)

where each term means:

e matrix Y = XV represents the projection of the
data vectors xz. € RV onto the basis vectors.
Each column y., represents the projections of
all row vectors xy., k = 1,..., M onto the n-th
basis vector v.,.

e matrix P is a diagonal matrix with diagonal en-
tries equal to 0 < ppp, < 1. If ppy, = 1, the n — th
column of Y is retained, and if p,, = 0, it is
replaced by a null vector. In the general case,
the scaling factors pp, can be estimated from the
eigenvalue spectrum and the related noise variance
[1].

¢ the reconstructed data X in the original N —
dimensional space results from the product with
VT

Thus the reconstructed data matrix X corresponds
to a reduced rank approximation of the original data
matrix with a possibly modified eigenvalue spectrum.
But the reconstruction does not preserve the Hankel
structure of the original data matrix (see eqn. 1). To
rectify this, each anti-diagonal element is substituted
by the corresponding average of all entries of the anti-
diagonal. Finally, the embedding is reversed to obtain
the reconstructed signal £[k] which is an enhanced ver-
sion of the original signal.

III. SVD As FILTER BANKS

Signal enhancement as it was sketched above can also
be addressed employing linear invariant systems the-
ory. In the following we discuss the application of a
bank of finite impulse response (FIR) filters, where
analysis and synthesis filter pairs are connected in par-
allel. Note that eqn. (2) can be expressed as a weighted
superposition of terms related with the non-zero singu-
lar values/eigenvalues and corresponding eigenvectors
of the subspace model. Employing the subspace model

291

V = [v.1,Vug, ..., V.y)], and using block matrix oper-
ations, the terms X,, are M x N matrices of rank one.
The reconstructed data matrix can then be expressed
as

X = Xv,m'r)uv?1 +... .+ Xv*NpNNv;;FN
Ye1PuVa + 4 YanPnviy
N
= XX (3)
n=1
where v,,, n = 1,..., N represent analysis or syn-

thesis filter coefficients. In Hansen et al. [5], a filter
bank architecture is proposed where formally analy-
sis and synthesis filters operate on trajectory matrices
with a Hankel and a Toeplitz structure, respectively,
to include the diagonal averaging [4] during synthesis.

However, in the framework of linear invariant systems
theory, the filter bank structure needed to achieve the
output time series &k] should be provided by the in-
put time series z[k] instead of by the trajectory ma-
trix. Hence we propose an approach based on filter
responses and related transfer functions rather than
on matrix manipulations.

As mentioned above, each column y.,,n=1,...,N
of the projected data Y is obtained via y., = Xv.p.
Each element of the M x 1 vector y., is the dot product
between the n — th eigenvector and a row of the data
matrix. But this data manipulations can also be for-
mulated as the weighted sum of a sequence of samples
of the original time series,

N
ynlk] = vam[k +i—1] (4)

where 1 < k < M and y,[k] are the elements of the
nth colurmn of matrix Y, i.e, y.n . Therefore, the y..,
has M samples starting by time index k = 1, like in the
first column of the matrix X. The entries of the vector
Vin, the n — th column of the subspace model, are
the coeflicients of an anti-causal finite impulse response
(FIR) filter as the output at time index k depends on
input samples at time index k,k+1...k+ N —1.

The transfer function H,(z) of the analysis step can be
computed by substituting in equ. (4) every delay oper-
ation by the corresponding z transform [9]. Therefore
by transforming z[k] to X (z = Y- z[k]z~*, z[k £ d]
to 229X (z) and y,[k] to Y, (), the filtering operation
can be formulated using the following transfer function

Yo (z)
(2)

This transfer function H,(z),n = 1,...,N results
from an output-input ratio and constitutes the analysis
block as it decomposes the input into several compo-
nents ynlkl,n = 1,..., N. In filter bank terminology,
the analysis filter is then followed by the synthesis filter

Hy(z) = = (Vin + Ugnz! + ... 0nnz®™ D) (5)
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which should combine components to form a new sig-
nal. To facilitate the exposition, let’s consider the n-th
term of eqn. (3) and assume ppn, = 1 for simplicity. In
that case the n-th contribution to the reconstructed
data matrix is

7 T T 3
X, = XV*TLV*n = Y+nVin- (6)

Therefore each column of the rank-one matrix X, is a
scaled version of y.n

'Uln'yn[l] VanlYn [1] ’UNnyn[]-]
VinlYn [2] Vanln {2] UNnYn [2]
Xn — UVinYn [3] VanlYn [3] UNnlYn [3]
VinYn[M]  V2nYn[M] UNnYn|M]

(M
Obviously, the resulting matrix does not have the
Hankel structure of the original matrix X. But by
replacing the entries in each anti-diagonal of X, by
their average, an Hankel matrix is obtained again. In-
terestingly, the diagonal averaging can equally well be
formulated as a linear filtering operation

dulk = == S vgalh =i+l (®)
i=

where the quantities Ny, [ and s have values according
to number of elements in the anti-diagonals of the
matrix defined in eqn. (7). More specifically, the
response can be sub-divided into a transient and
a steady state response according to the following
distinction:

e With N elements, eqn. (8) represents a
steady state response of the filter in the case
of N < k € M and we have Ny =N,l=1s=N.

e With less than N elements, eqn. (8) represents
the transitory response of the filter:

~if 1 <k < (N —1) (upper left corner of the
matrix Xn) then we have Ny = k, [ = 1 and
s = Ng;

—if (M+1) < k £ K (lower right cor-
ner of the matrix X,) then we have
Ny = K—-k+1, | = N—-Ng+1 and
s=N.

Note that the entries of the vector V.., the n —th
column of the subspace model, are the coefficients of a
causal finite impulse response (FIR) filter. Both cases
can be unified by formally setting ym[k] = O for the
time indices k < 1 and k > M, and always compute
eqn. (8) as in the steady-state case. Therefore, the
transfer function for the synthesis filter reads

Yo (2)

1
Fu(2) = = ﬁ(vln—l—vznz”l-l—. Hunnz” VD)

9)
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Notice that the analysis (Hy (z)) and synthesis (F(2))
transfer functions differ by a scale factor (1/N) and by
the sign of the powers of z. Therefore the magnitudes
of the frequency response of both filters are related by
a scale factor (1/N) and their phases are symmetric.
The transfer function of the global system is a cascade
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Fig. 1 - Spectogram of the signal with different SNR:left-
SNR=40dB, right-SNR=10dB.

formed by the projection step (analysis) and the re-
construction step with diagonal averaging (synthesis)
given by

X N-1
n(2) = Fp(2)Hyn(2) = Z fin® (10)

(Z j=—(N~1)

1111(2) ==

The coefficients t;, result from the product of two
polynomials with the same coefficients but powers of z
with opposite sign, and then tiy, = t—in,% = 1o, (N=
1) [9]. Therefore, the frequency response Tn (€7*) has
the following expression

N-1

Tn(ej“’) =ton + Z 2tin cos(iw) (11)
i=1

where j = v/—1. The frequency response is a periodic
real function, with period equal w = 27, hence corre-
sponds to a zero-phase filter. This means that each
extracted component 2, [k] is always in-phase with its
related original z[k]. The orthogonal output sequences
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Fig. 2 - Frequency responses of T1(z), related with largest eigen-
value, along the frames computing model with :£0p-SNR=40dB,
middle-SNR=10dB , bottom-SNR=0dB

ynlk],mn = 1... N of the analysis step are filtered ver-
sions of the input sequence z[k] and their energy con-
tent is given by the eigenvalue associated with the
corresponding eigenvector (eigenfilter). The scale fac-
tor pn, only changes the amplitude of the sequence
ynlk]. The total transfer function is finally obtained by
adding the transfer functions of the parallel branches
of the filter bank. The resulting output #[k] is a sum of
the selected signals Z,[k], e.g, the outputs of the cas-
caded filter pairs formed by H,(z) and F,(z). Notice,
that the embedding of the time-series as suggested by
(1) leads to an anti- causal filter for the analysis step
and to a causal filter for the synthesis step. Using al-
ternative embedding procedures, this property of the
filters can interchange. Though examples of frequency
responses of the eigenfilters are shown graphically in
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[5], no analytical expressions of the filter responses are
given. Instead, the present work also deduces such
closed-form analytical expressions for the analysis and
synthesis filters. Note that frequency responses of the
component filters H,(z) and F,(z) cannot be given
in closed-form similar to T, (z) in (11) due to lacking
symmetry properties of their coefficients [9]. But no-
tice that the absolute values of the frequency responses
of all the filters have the same profile.

IV. DiscussioN AND CONCLUSION

In this section we present illustrative examples of the
frequency response of eigenfilters for a segment of a
speech signal corrupted by additive gaussian noise.

Fig. 1 shows the frequency content of a noisy speech
signal in each frame (spectrogram). Each frame corre-
spond to a segment of 25ms (400 samples) with 60% of
overlap between the frames. In the first spectrogram
the energy of the signal is concentrated in the frames
15 — 45 corresponding to frequencies f < 2000Hz.
With decreasing the SNR, the speech signal becomes
increasingly corrupted and the frequency content is dis-
tributed more uniformly (see Fig. 1, right). The or-
thogonal subspace model V was computed for each
frame using K = 400 samples and an embedding di-
mension N = 30.

Fig 2 shows the frequency response of T} (2), i.e. of the
analysis/synthesis filter that corresponds to the largest
eigenvalue of the subspace models. This filter is clearly
centered in the region of the highest energy of the input
signals. If the SNR is high (figure on left), the pass-
band of the filter matches the signal. Even when the
energy of the signal is low, the filter has its passband
in low frequency range. When the noise level increases,
the passband of the filter moves towards the high fre-
quency range for the frames without signal information
(see figure on middle). But when SNR = 0dB, the fil-
ter is always centered on the high-frequency range both
in frames without or with active voice signals. Fig.
3 shows the frequency response of T,,(z),n = 1...30
computed using a frame with active voice (the 30th
frame). The differences on the profile of the frequency
responses is obvious. The filters were ordered accord-
ing the values of the eigenvalues. It can be seen that
when the SNR is high, the first filters, associated with
the largest eigenvalues, have their passband centered
in the low frequency range, and the last filters, asso-
ciated with the smallest eigenvalues, are centered in
the high-frequency range. Decreasing the SNR, the fil-
ters associated with the highest eigenvalues have pass-
bands both in the low-frequency band and in the high-
frequency band (see figure on middle). However, for
SNR = 10dB, the first five filters still concentrate
their passband in low frequency range. Finally, when
SNR = 0dB, the filters with their passband in the
high frequency range are the ones corresponding to the
largest eigenvalues, while the filters centered in low fre-
quency range correspond to the smallest eigenvalues.

The interpretation of subspace-based methods as filter
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Fig. 3 - Frequency responses of Tp(z)yn = 1,...,N for

30th frame using:top-SNR=40dB, middle-SNR=10dB , bottom~
SNR=0dB

banks helps to attain a clear-cut insight into the out-
comes of the method. By applying a linear invariant
system theory approach, analytical expressions of the
frequency response are deduced in this work. These re-
sults thus corroborate the properties of the SVD steps
referred to in previous works [5], [4], [6]-

By the frequency responses of the filter bank, corre-
sponding to the basis vectors of the subspace model,
the frequency content of the different components can
be attained easily. Eigenfilters are data adaptive, and
the relevance of one component to the energy of the
input signal is deduced from the corresponding eigen-
value. Moreover, the frequency profile of each compo-
nent is determined only at the projection step. How-
ever, in order to get a component in phase with the
input signal, the diagonal averaging is required.
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