416

ELECTRONICA E TELECOMUNICACOES, VOL. 5, N° 4, DEZEMBRO 2012

Performance study of filtered back-projection algorithms implemented on GPUs

Bruno Faria

Abstract — In recent years the use of graphical processing
units (GPUs) in the diverse fields of science has increase dra-
matically. This increase is not only due to the GPU tremen-
dous computational power, but also because they are relatively
cheap when compared to clusters. In this work we explore the
use of the GPU to reduce the computational time of the fil-
tered back projection algorithm on computed tomography. To
address the computational gain of the GPU implementation,
two CPU implementations have been developed: single-core
and multi-core. Both CPU implementations are benchmarked
against the GPU implementation. In either case the GPU im-
plementation proved to be a faster alternative. When com-
pared to the CPU implementations the GPU was 273 times
faster than the single-core CPU implementation and 34 times
than the multi-core implementation.

Keywords — Image Reconstruction, Tomography, Filtered-
Backprojection, GPU

I. INTRODUCTION

Computed tomography (CT) is a very important tool in
clinical diagnoses. However, the reconstruction of high
quality objects from tomographic data can be time con-
suming on a standard system. In this sense, it would be
highly desirable to have a solution that provides not only
real-time but also high resolution reconstruction. Such a
solution would provide enormous advantages in both diag-
nostic and treatment interventions.

Several algorithms can be used on the reconstruction stage,
but the most widely used one is the Filtered Back Projec-
tion (FBP) [?]. The FBP algorithm reconstructs the object
from its X-ray projections. In this algorithm each pixel is
the result of the sum of the corresponding projection con-
tributions. In order to reconstruct the object a great num-
ber of projections is required. Adding this to the fact that
for each pixel all projections must be processed, it is clear
that this methods are computationally expensive (complex-
ity O(n?)).

One of the technologies that has been gaining more
and more recognition are the graphical processing units
(GPUs). These devices are suitable for tasks where there
is data parallelism. Data parallelism is very important be-
cause GPUs are a single instruction multiple data (SIMD)
devices. This data parallelism is inherent to the FBP algo-
rithm because for every pixel in the reconstructed image the
same functions are applied to the data.

The aim of this work is to implement the Filtered Back
Projection algorithm on the GTX 580 and benchmark its
performance. The benchmarks are made against single and
multi core CPU implementations. In section ?? we will
give a brief introduction of what a GPU is, and how it is

organized. In section ?? we describe how an object is
reconstructed from its projections using the Filtered Back
Projection algorithm. The implementations are described in
section ??, and the benchmark results in section ??. Finally
in section ?? we draw some conclusions and directions for
future work.

II. AN INTRODUCTION TO GPU DEVICES

The aim of this section is to give a simple introduction to
how a GPU is organized. The graphic card used on this
work is the GTX-580 with the Fermi GPU GF110. This
GPU is organized into 16 highly threaded multiprocessors
called Streaming Multiprocessors (SMs) [?], [?]. A repre-
sentation of an SM is presented on figure ??. In the GTX-
580 each SM is composed by 32 streaming processors or
SPs, for a total of 512 cuda cores.

I |
I

J |
J |

Fig. 1
GF110 STREAMMING MULTIPROCESSOR DIAGRAM.

From a CUDA programmer point of view the GPU is a
device that executes a given number of threads at a time.
Threads can be identified (indexed) using 1, 2 and 3 dimen-
sions and are organized into blocks. A block can also be
indexed by 1, 2 or 3 dimensions and executes on a SM. Till
the present date, each block is executed in batches of 32
threads called warps. The maximum number of warps that
can reside on a SM is 48. To allow scalability blocks are
queued into the GPU.

ELECTRONICA E TELECOMUNICACOES, VOL. 5, N° 4, DEZEMBRO 2012

In a memory respect, the GPU has access to four types of
memory which are: i) global memory, ii) texture memory,
iii) shared memory and iv) constant memory. Global mem-
ory is the biggest region of memory, but it is also the slowest
because it is outside of the GPU. Texture memory is a spe-
cial way of accessing the global memory and only presents
advantages when there is data locality. Texture memory is
accessed through the texture hardware. Shared memory re-
sides inside of the SM and therefore it is very fast but it is
also a very small region of memory. Finally constant mem-
ory is the fastest memory on the GPU but it has two down-
sides. First it is read-only (at least from the GPU side), and
second it is a very small region.

In section ?? we will see how these aspects are used in
the algorithm parallelization. However, before that we need
to understand how the Filtered Back Projection algorithm
works, which will be discussed in the next section.

III. TOMOGRAPHIC RECONSTRUCTION PRINCIPLE

Computed tomography (CT) is a powerful non-destructive
evaluation technique for producing 2-D and 3-D cross-
sectional images of an object from flat X-ray projections.
CT images are very useful because they provide a way to
characterize the object internal structure such as dimen-
sions, shape, internal defects and density. The CT imaging
system is composed by an X-ray source that is directed to-
wards an object from multiple orientations and a system of
detectors that measures the correspondent decrease in X-ray
intensity.

Here we will only discuss the reconstruction process for a
CT with parallel beam geometry. In this geometry, projec-
tions of the object are captured by a one dimensional sensor.
Each projection is captured for a specific angle (0 < 6 <)
and placed on a image. The formed grey image is denoted
as the sinogram. The grey levels in the image correspond to
the X-ray attenuation which is primarily a function of the
X-ray energy source and the material composition.

The object is then reconstructed from the multiple projec-
tions that compose the sinogram. There are several methods
to reconstruct the object from its projections being the most
popular one the filtered back projection (FBP) algorithm.
In order to understand the FBP algorithm lets consider the
process on figure ??, that describes the acquisition of a
given projection.

417
2,
?/.
%
y _
7
P
%
object
X &
<]
!
f(x,
+@\\ (x,y)
&
Fig. 2
AN OBJECT f(x, y) AND ITS PROJECTION ARE SHOWN FOR AN ANGLE
OF 6

In this figure 2, y denote the object coordinates and f(z, y)
the attenuation coefficient of the object under consideration.
In this case and assuming there is no dispersion the projec-
tion at a given angle 6 can be described as:

Py(t) = [z, y)ds. (H
(0,t)line

This expression can be then expressed using the delta func-
tion as [?]:

“+o00 +o00
Py(t) = / / f(z,y)d(z cos(8) + ysin(0) — t)dxdy
o @

The above expression is known as the radon transform of
f(z,y). A set of this functions for given angles define the
object cross-section projections. If the angle is kept con-
stant at a given projection then we get parallel beam projec-
tion data, if not we get fan beam data.

The FBP algorithm then reconstructs the object from the
projection data by applying a set of steps which can be sum-
marized as follows [?] [?]:

1. Compute the one dimensional Fourier transform of
each projection as:

+oo
Sp(w) = Py(t)e 2™t qt 3)

— 00

2. Apply the filter p(w) in the frequency domain. Sev-
eral filters can be used in this step such as: Ramp (stan-
dard), Cosine, Hamming, Hanning, and SheppLogan .
However, for simplicity we will use the ramp filter [?]

418

defined as p(w) = |w|.
Mpy(w) = So(w)p(w) ©)

3. Compute the one dimensional inverse Fourier trans-
form of Mp(w):

—+o0

Qo(t) = My (w)e*™tdw 5)

— 00

4. Find the back projections. This step is the smearing
of the filtered projections back onto the object, and is
mathematically represented as:

fla) = [Qolarcos(®) + ysin(@)ds - ©

The last step accounts for more than 80% of the total com-
putational time [?]. For images with n by n pixels and n
projections the complexity of this step is of the order of n?.
As for every pixel in the reconstructed image it is required
to evaluate the integral, this step is a good candidate to be
implemented in parallel. In the next section we describe
how such parallelization can be achieved.

IV. IMPLEMENTATIONS

For every pixel in the reconstruction step, the same expres-
sion needs to be evaluated (??). As there is no relation in the
reconstruction stage, other than that for each pixel the same
data is used. One possible parallelization of this step can be
to make each thread process a given reconstructed image
pixel (pixel driven approach). This approach led us to con-
sider a two dimensional grid composed of two dimensional
blocks. Each block has 256 threads, 16 in each dimension
(x and y). A representation of this division is presented in
figure ??.

Image Pixels Division of image Division of blocks
in blocks in threads
R R ‘
Fig. 3

THE GPU PARALLELIZATION STRATEGY ADOPTED.

The filtered projection data was stored in texture memory.
The use of texture memory presents two advantages. First
it is a fast access memory when there is a great number of
accesses to the same neighbouring address, and second the
interpolation is done in hardware. The down side of this
approach is that only single precision is available. Due to
this restriction the CPU implementations were also done in
single precision.

The parallelization strategy adopted in the multi-core CPU
implementation (using OpenMP or OMP) was to make each
thread process a line of pixels rather than a single pixel.
This strategy was adopted to reduce the thread creation

ELECTRONICA E TELECOMUNICACOES, VOL. 5, N° 4, DEZEMBRO 2012

overhead. In the case of the single-core implementation,
it is identical to the multi-core one but uses only one thread
to process all the image pixels.

In the next section we benchmark both CPU and GPU im-
plementations, and present the results of the GPU compu-
tational gains.

V. PERFORMANCE RESULTS

In this section we present two types of results. The re-
sults arise from the different benchmarks. We benchmark
both CPU implementations, single-core and multi-core, and
compare them against the GPU implementation. Each
benchmark is the result of averaging the time required by
the algorithm to reconstruct the object over 10 sequential
runs.

To have a better estimation of the computational gains
these benchmarks were run for different reconstructed im-
age sizes. The reconstructed image size ranged from
(2%,21) to (2!3,213). The data used in the reconstruction
process was generated by applying the matlab radon func-
tion to the Shepp-Logan phantom image.

The test bed system was composed of an intel core
i7-980X extreme (CPU) with 24GB of RAM (DDR3),
and a GTX-580 DirectCull (GPU) with 1.5GB of RAM
(GDDRYS) from Asus. The results of the computational
gains can be observed in figure ??.

300

B Multi-core CPU/ GPU o o ©O

250/ © Single-core CPU/GPU

N
o
o
o

150 |

100 |

GPU Computational gain

50

0 O Q O Q L L L
0 2 4 6 8 10 12 14

Phantom size in Iogz(x) scale

Fig. 4
COMPUTATIONAL GAINS OF THE GPU OVER THE SINGLE-CORE
(RED-YELLOW DOTS) AND MULTI-CORE (BLUE-RED SQUARES) CPU
IMPLEMENTATIONS

Even though images with sizes of (2%, 2') provide no med-
ical information, they are still useful for benchmarking. In
figure ?? it is plotted the computational gain of the GPU
implementation over the CPU ones. It can be seen that for
images with sizes less or equal to (2°,2%), the CPU single-
core implementation is faster than the multi-core one. This
happens due to the overhead in the thread creation. It can
also be seen that for bigger images the multi-core CPU im-
plementation can out pace the single-core one by a factor

ELECTRONICA E TELECOMUNICACOES, VOL. 5, N° 4, DEZEMBRO 2012

of 8. Nonetheless, in all of the considered cases the GPU
implementation was considerably faster than the CPU ones.
For a reconstructed image with a size equal or bigger than
(213,213), the GPU can be 273 times faster than the CPU
single-core and 34 times faster than the CPU multi-core im-
plementation. One thing to notice though, is that the GPU
only reaches its peak performance when the reconstructed
image size is (2!°,2!%). Which means that only images
with sizes bigger than 1024 x 1024 produce enough work
to keep the GPU busy.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have shown how the filtered back pro-
jection algorithm can be parallelized. Two different
CPU implementations have been provided, single-core and
multi-core. Benchmarks comparing these implementations
against the GPU one have been provided. It was shown that
the CPU single-core implementation only presents advan-
tage over the multi-core one when the image size was infe-
rior to (2%, 2%). From this point on the CPU multi-core im-
plementation was considerably faster. One important result
was that no matter the size of the reconstructed image, the
GPU implementation was always faster than the CPU ones.
For image sizes bigger than (29, 219) the GPU implemen-
tation can be 273 times faster than the CPU single-core im-
plementation, and 34 times faster than the multi-core one.

Even though in this work the GPU implementation was
only done for a slice of data, it proved to be a faster al-
ternative to the CPU implementations. One thing that we
intend to explore is if this performance increases or at least
is kept, when the reconstruction is performed on multiple
slices of data. Another thing to explore is if the iterative
reconstruction algorithms can also benefit from the GPU.
Iterative algorithms are extremely slow when compared to
the filtered back projection algorithms, but provide better
image quality when only a small number of projections is
available.

419

REFERENCES

[1] A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging, IEEE Press, New York, 1988.

[2] David B. Kirk and Wen-mei W. Hwu, Programming Massively Par-
allel Processors: A Hands-on Approach (Applications of GPU Com-
puting Series), Morgan Kaufmann, 1 edition, Feb.

[3] Jason Sanders and Edward Kandrot, CUDA by Example: An Intro-
duction to General-Purpose GPU Programming, Addison-Wesley
Professional, 1 edition, July.

[4] J. Hsieh, Computed Tomography: Principles, Design, Artifacts, and
Recent Advances, SPIE Press monograph.

[5] Nikhil Subramanian, “Abstract a c-to-fpga solution for accelerating

tomographic reconstruction”, 2009.

