Wireless Powered Flight: Charging Drones While in Operation

Ricardo A. M. Pereira^{1*}, Helena Ribeiro¹, Vinícius Oliveira¹, Amit Baghel¹, Paulo Capitão¹, Hélder Morais², J. Martinho M. Oliveira², Nuno Borges Carvalho¹

1 – Instituto de Telecomunicações and University of Aveiro.

2 - CICECO, University of Aveiro

FIGURE 1

University of Aveiro team in Dubai, exhibiting the "Wireless Powered Flight" project at Prototypes for Humanity 2024.

FIGURE 2

Schematic of the wireless powered drone system with the transmitting antenna, dielectric lens, receiving antenna, rectifier and drone.

Wireless power transfer (WPT) can revolutionize energy distribution by eliminating the need for physical cables. This project advances WPT by developing a system to wirelessly power a drone while in operation, so that there is no need to interrupt missions for power charging, inspired by the pioneer work of William Brown^{1, 2}.

Here at the "Radio Systems – Av" group from Instituto de Telecomunicações – University of Aveiro, the research in WPT uses microwaves, where the energy propagates freely through space, enabling long-systems. By focusing the energy through quasioptics³, the beam efficiency can be significantly increased⁴, which is achieved in this project through dielectric lenses⁵ and with an aerodynamic receiving antenna⁶. This innovation supports sustainable energy goals, offering potential for clean energy distribution, extending the range of aerial electric vehicles or even enabling uninterrupted operation, improving energy access in challenging environments, all of which are crucial in surveillance, delivery, and rescue missions, either in military or emergency scenarios.

A small-scale project was developed for focusing power at under 2 m, showing that a drone only turns on when the energy is focused directly on it. It was awarded the "Outstanding Student Design Demonstrator Award" at the IEEE Wireless Power Transfer Conference and Exhibition 2024 in Kyoto, Japan, and selected as one of

100 projects worldwide to be exhibited at Prototypes for Humanity 2024 in Dubai⁷.

Reference

[1] W. Brown, J. Mims and N. Heenan, "An experimental microwave-powered helicopter," 1958 IRE International Convention Record, New York, NY, USA, 1965, pp. 225-235.
[2] W. C. Brown, "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1230–1242, 1984.

[3] P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications. Piscataway, NJ: IEEE Press. 1998.

[4] R.A.M. Pereira, N.B. Carvalho, "Quasioptics for increasing the beam efficiency of wireless power transfer systems," Scientific Reports 12.1 (2022): 20894.

[5] R. A. M. Pereira, N.B. Carvalho, "Quasioptical dielectric lens system for WPT solutions", 2022 Wireless Power Week, 2022, pp. 190-194.

[6] V. Oliveira, R. A. M. Pereira, A. K. Baghel, N.B. Carvalho, "Design and Development of a Patch Antenna Array for Wireless Power Transfer in Drones", 2024 IEEE International Conference on RFID Technology and Applications, in press.

[7] Prototypes for Humanity 2024, "Wireless Powered Flight," Accessed: Mar. 24, 2025. [Online]. Available: https://www.prototypesforhumanity.com/project/wireless-powered-flight/.

