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ABSTRACT 

Di-Leucine (LL) peptide nanotubes (PNTs) were grown. The local piezoelectric properties of LL PNTs were 
measured using atomic force microscopy. Using piezoresponse force microscopy the strong piezoelectric 
properties with d15 ~3.2 pm/V was found. The magnitude and distribution of the piezo response signal were 
analysed depending on the orientation of the tubes. Features of the charge distribution depending on the 
microstructure of LL PNTs were discovered by Kelvin Probe Force Microscopy.  

 

 
1. INTRODUCTION 

Di-peptides nanotubes (PNTs) have received 

much attention in the last decade because of their 

close relationship with life and the nanotube 

formation by various hydrophobic dipeptides and 

its structural properties were studied by many 

authors [1, 2]. These are materials absolutely 

corelated with biology (systhesis, physical and 

chemical properties, utilizations) and their have 

many potential applications in various broadening 

fields from medicine (as containers for medical, 

biosensors, etc [3-6]) to technology energy 

(harvesting), nanoelectronics [7], semiconducting 

nanostructures [8], colored surfaces [9], etc. 

Polypedide structure of PNTs is very close to polyt 

– DNR and RNR. So, PNTs are as well as genetic 

and tissue (protein) engineering.  Tubular 

structures can be constructed with cyclic di-, tri-, 

tetra-, hexa-, octa-, and decapeptides with various 

amino acid sequences, enantiomers, and 

functionalized side chains and can be applied for 

antiviral and antibacterial drugs, drug delivery and 

gene delivery vectors, organic electronic devices, 

and ionic or molecular channels [10]. From another 

side known PNTs nanotubes structures have 

crystal structure what is possible to do analysis 

from material science point as conductor, 

semiconductor and possible to do controlled 

microstructure different blocks and elements for 

electronics [11], for example, dipeptides DiHpa, 

DiApp, and DiAph [12]. Hierarchical self-assembly 

Phe peptide blocks can form nano and micro-

structures sized assemblies [13]. Self-assembly di-

para-fluoro-Phe, di-pentafluoro-Phe, di-para-iodo-

Phe, di-4-phenyl-Phe, di-para-nitro-Phe well-

ordered nanostructures [14] and morphological 

twist in Phe-Phe dipeptide conjugates [15] were 

obtained. Self-assembly of Fc-coupled 

diphenylalanine (Phe-Phe, FF) and then used as 

supporting matrix for immobilization of glucose 

oxidase (GOx) were synthesized [16]. Self-

organization Asp-Phe PNTs, Tyr-Ala (YA) and Asp-

Phe [17], metal-mediated modification of spherical 

soft assemblies Phe–Phe dipeptide [18] are known. 

The peptide H-Phe(4-azido)- Phe(4-azido)-OH 

self-assembled into porous spherical structures, 

whereas the peptides H-Phe(4-azido)-Phe-OH and 

H-Phe-Phe (4-azido)-OH [19] was describes too. 

Ile-Gln-Ser-Pro-His-Phe-Phe (IQSPHFF) identified 

and found to undergo self-assembly into 

microparticles in solution [20]. Boc-Ile-Ile-OMe, 

Boc-Phe-Phe-Phe-Ile-Ile-OMe and Boc-Trp-Ile-Ile-

OMe showed nanotubular structures [21]. Self-
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assembly of aromatic CDP (Phe-Phe) into fibre 

bundles with 1–2 mm thick and several millimetres 

long is described [22]. Using zwitterionic Phe-Phe 

dipeptides and straightforward experimental 

procedures tubular and vesicular dipeptide 

structures [23], oriented self-assembly dipeptides 

films [24] have been grown.  

Piezoelectricity is the ability of no 

centrosymmetric crystals to produce mechanical 

stress/strain under electric field or charge under 

mechanical stress. This fundamental property has 

long been used in numerous devices 

microelectromechanical systems (MEMS): such as 

acoustic transducers, sensors and actuators, 

piezoelectric motors, rf resonators, SAW filters, 

micro energy generators (energy harvesting). To 

date, one of the most popular energy harvesting or 

piezoelectric sensor materials is lead zirconium 

titanate (PZT) because of its high piezoelectric 

constant and electromechanical coupling factor. 

However, the critical issues currently limiting its 

wide applications lie in its fragility and 

environmental hazardous element (lead). To 

address these problems, much effort has been 

expended on the piezoelectric organic compounds 

and their composites (PNTs) [25]. Strong 

piezoelectric activity in glycine and diphenylalanine 

nanotubes (FF PNTs) holds a great promise for 

using piezoeffect in such applications was 

discovered [26-29]. 

We investigated the electromechanical 

properties of new PNTs: Di-Leucine (LL). 

 

Figure 1. Experimental and simulated XRD patterns of Leucine dipeptide PNTs.   

Table 1. Crystal data of Leucine dipeptide. 

a, Å  b, Å  c, Å    V, Å3 

33.087 16.999 6.062 90° 90° 90° 3409.55 
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2.  EXPERIMENTAL DETAILS   
Table 2. Reflection indices, dhkl values and relative peak intensities in the simulated XRD patterns for XRD 

of Leucine dipeptide on Fig. 1.   

No. Pos. [°2Th.] h k l d-spacing [Å] Rel. Int. [%] 

1 5.1829 2 0 0 17.05077 100 

2 5.7972 1 1 0 15.24548 52.59 

3 7.3749 2 1 0 11.98719 5.72 

4 9.3783 3 1 0 9.43046 6.22 

5 10.4337 4 0 0 8.4788 78.96 

6 11.6477 2 2 0 7.59762 15.29 

7 13.0209 3 2 0 6.79934 3.07 

8 14.0963 5 1 0 6.28292 3.92 

9 14.8404 1 0 1 5.96952 1.15 

10 15.5556 2 0 1 5.69666 2.11 

11 15.9248 1 3 0 5.56539 1.86 

12 16.4674 2 3 0 5.38321 6.69 

13 17.2118 3 1 1 5.15204 3.63 

14 18.0761 1 2 1 4.90761 0.9 

15 18.8833 6 2 0 4.69959 49.52 

16 19.6784 5 0 1 4.51148 4.6 

17 20.437 5 3 0 4.3457 7.87 

18 21.1547 7 2 0 4.19985 18.99 

19 21.6979 8 1 0 4.09592 5.39 

20 22.4735 3 4 0 3.95629 3.69 

21 22.9621 3 3 1 3.8732 0.32 

22 23.5433 7 0 1 3.77889 3.08 

23 24.2113 7 3 0 3.67613 11.31 

24 24.7465 5 4 0 3.59782 1.93 

25 25.1491 5 3 1 3.54113 2.82 

26 26.3298 1 5 0 3.38495 8.62 

27 26.8473 10 1 0 3.32087 3.24 

28 27.2507 3 5 0 3.27262 0.63 

29 27.9538 7 4 0 3.19188 0.89 

30 28.4699 9 3 0 3.13518 1.73 

31 29.3714 5 5 0 3.04098 0.96 

32 29.8293 9 2 1 2.99533 1.89 

33 30.8676 11 2 0 2.8969 2.12 

34 31.362 4 0 2 2.85235 1.85 

35 31.6858 7 4 1 2.82393 1.75 

36 32.1921 12 1 0 2.78067 4.25 

37 32.6298 11 0 1 2.74436 2.2 

38 33.4582 12 2 0 2.67829 2.59 

39 33.9177 2 3 2 2.64305 6.09 

40 34.4937 3 3 2 2.60022 0.44 

41 35.192 4 3 2 2.55021 1.21 

42 35.9805 11 4 0 2.49611 2.27 

43 36.4499 8 0 2 2.46504 1.39 

44 36.7902 2 4 2 2.44302 0.5 

45 37.5935 14 1 0 2.39264 3.48 

46 38.0678 13 3 0 2.36391 1.39 

47 38.7637 14 2 0 2.32306 1.54 

48 39.5188 11 5 0 2.2804 1.95 

49 40.5768 14 3 0 2.22335 0.31 

50 41.2749 4 5 2 2.18734 1 

51 41.8341 11 0 2 2.15939 0.62 

52 43.0997 16 1 0 2.09887 0.46 

53 44.168 7 5 2 2.05055 0.74 

54 46.1086 0 2 3 1.96867 0.27 

55 46.8749 3 2 3 1.93665 0.5 
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2.  EXPERIMENTAL DETAILS 

Di-peptides compounds Di-Leucine (LL) were used 

(Bachem, Switzerland: M-1535.0005 H-Leu-Leu-

OH). PNTs were self-assembled by dissolving the 

dipeptide in the lyophilized form (Bachem, 

Switzerland) in 1,1,1,3,3,3-hexafluoro-2-propanol 

at a concentration of 20-100mg/ml. The stock 

solution was then diluted to a final concentration of 

2mg/ml in doubledistilled water for the self-

assembly process to occur. The diluted solution 

was deposited onto Pt-coated silicon substrates 

and left overnight for drying at room temperature. 

The structural features were analyzed by X-ray 

diffraction (XRD) technique using a Rigaku X-ray 

diffractometer having a CuKα radiation source with 

λ = 1.541 Å. 

Atomic Force Microscopy (AFM) measurements 

were carried out using a Veeco AFM Multimode 

Nanoscope (IV) MMAFM-2, Veeco microscopy. 

Local piezoelectric properties of the PNTs were 

visualized simultaneously by using Atomic Force 

Microscopy (AFM) in contact mode and 

piezoresponse force microscopy (PFM) methods 

[30]. The PFM technique is based on the converse 

piezoelectric effect, which is a linear coupling 

between the electrical and mechanical properties 

of a material. Since all ferroelectrics exhibit 

piezoelectricity, an electric field applied to a 

ferroelectric sample result in changes of its 

dimensions.  To detect the polarization orientation 

the AFM tip is used as a top electrode, which is 

moved over the sample surface. Piezoresponse 

force microscopy relies on the linear strain 

response as a function of the external electric field. 

Regardless of this linear response that is inherent 

to materials without center of inversion symmetry, 

all materials dispose of a quadratic strain response 

in the electric field, known as electrostriction. 

Electrostriction therefore provides a local 

electromechanical response at the second 

harmonic of the AC voltage in piezoresponse force 

microscopy. This electrostrictive response 

provides valuable insight into the material 

properties in itself. It becomes particularly 

interesting in systems where the symmetry of the 

crystal does not allow for particular modes of 

deflection of the AFM, especially for lateral 

deflections. In this scenario, this type of microscopy 

provides a powerful imaging tool for local material 

defects like misfit dislocations. EFM (Electric Force 

Microscopy) oscillates a conducting AFM tip to 

sense electric force gradients.  Usually, this is done 

in 2 passes - one to measure the topography in a 

standard dynamic mode and the second to "lift" a 

set amount above the recorded profile to measure 

electric field strength.  Using the phase signal, a 

map of the gradient of the electric field is created.  

Kelvin Probe Force Microscopy (KFM) mode 

 

 

Figure 2. Optical images of LL PNTs.   

(a) (b) 
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measures the work function of the surface.  It is 

also known as surface potential microscopy.  

3.  RESULTS AND DISCUSSION  

Fig. 1 shows powder diffraction patterns of L,L-

dileucine obtained in a similar way used for 

preparation of in this study for LL PNTs. 

Parameters of unit cell determined by XRD 

analysis (Table 1) is similar reported by C. Gorbitz 

[1]: a= 5.3524 Å, b= 16.7600 Å, c= 33.312 Å, V= 

2988.3 Å3. Rietveld-refined X-ray diffraction pattern 

of the dipeptide L,L-dileucine analysis was done 

using space group P212121 (Table 1, Fig.1). Strong 

difference in unit cell volume (14%) and parameter 

a (12%) can be explain by presents of water in the 

structure.  

Figures 2 show representative optical 

microscopy images of the investigated LL PNTs 

samples. As expected, as-grown PNTs 

demonstrate a variety of tubes of different lengths 

and diameters due to their spontaneous self-

assembly on the substrate surface.  

The cross section of the in-plane PFM (Figure 

3c) shows the piezoelectric profile has a decrease 

in signal at the centre of the tube. It can be 

assumed that such a profile is typical for tubes with 

a large ratio of outer to inner diameter, where the 

internal cavity (in the centre of the section) has a 

significantly smaller effective thickness and the 

resulting signal is less than on the wall). 

It is well known that the magnitude of the 

piezoresponce signal in PFM depends on 

measurement geometry and orientation. The figure 

4 shows that with an arbitrary distribution of tubes 

on the surface of the substrate, the recorded signal 

changes both in magnitude and sign. In-plane (IP) 

PFM image of peptide nanotubes with rotation 

demonstrating apparent contrast reversal. Blue 

 

 

 

Figure 3. LL PNTs. (a) Topography image.  (b) In plane PFM image.  Cross sections of AB - (c).  

.   

(a) (b) 

(c) 
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and yellow colors on Fig. 4 correspond to opposite 

 

Figure 4. 3D LL PNTs topography and in-plane PFM (color) image.   

 

 

 

Figure 5. LL PNTs. (a) Topography and (b) PFM image.  (c) IP signal angle dependences for representative 
tube. 

 

(a) (b) 

(c) 

Z 
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polarization orientations of the tubes. 

For the arbitrary orientation of the crystal, 

possible to use equation, d15Vac sin (Fig. 5b), 

applies, where now angle is the angle between the 

scanning direction and the Z-axis. As shown in 

Figure 3d, we observed this dependence with the 

maximum value of 3.2 pm/V (Fig.5c).  

Piezoelectric polarization leads to charge 

localization in the same way. For such a highly 

asymmetric case as tubes, when the polarization is 

directed along, one can expect an accumulation of 

charges at the ends of the tubes. In the case of a 

more significant reorientation of polarization, in the 

case of merging of two tubes, localization of 

charges can also be assumed. The method Kelvin 

Probe Force Microscopy (KFM) was used to study 

the charge distribution (Fig.6). It can be seen that 

at the points of contact of the nanotubes there is an 

increased contrast (indicated by arrows), which 

corresponds to the localization of the charges. 

 

4. CONCLUSIONS 

 

Experimental local measurements of the 

parameters of the piezo response of LL tubes and 

LL microcrystals were carried out. A study of the 

angular dependence of the orientation of the tubes 

showed agreement with the geometric 

measurement model. The effect of tube curvature 

on the electromechanical and electrostatic 

characteristics of the tubes was studied. The data 

obtained showed that LL-PNTs may be of the most 

promising interest for further use as stronger 

ferroelectric compounds. 
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