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ABSTRACT 

In present work, the free vibration dynamics of rotating single walled carbon nanotubes is investigated by using 
Eringen’s nonlocal theory of elastic structures. Transverse flexural vibration of SWCNT embedded in an elastic 
medium, a rotating cantilever SWCNT and a nanorotor based SWCNTs is elaborated by using the Hamilton 
principle to obtain governing equations. Generalized differential quadrature method (GDQM) is employed to 
discretize and resolve the Eigen problem. 

The effect of small scale, boundary conditions and angular velocity on the dynamic parameters is studied. 
Obtained results showed that SWCNTs provide exceptional structural properties. Findings of this study can be 
involved in the design of next generation nanomachines and nano-devices. 
 

 
1. INTRODUCTION 

Carbon nanotubes (CNT’s) are the main subject of 

research in nanotechnology; developed by Lijima 

[1] using transmission electron microscopy, the 

research interest in CNT’s has been enhanced by 

introducing them in nanoelectromechanical 

systems (NEMS) [2], this interest in CNTs is due 

the exceptional mechanical, chemical, electrical, 

thermal and optical properties that they offer. 

CNT’s are increasingly being used as building parts 

of nano-machines such as nano-robots, nano-

devices, nano-sonsors and nano-actuators for 

NEMS, as strong reinforcement nanomaterials for 

nano-composite materials, as biological nanobots 

for drug delivery and therapy.  

Researches on structural dynamics of 

nanoscale materials used to involve molecular 

dynamic (MD) simulation to investigate the nano-

effect with accurate solutions for CNT’s with small 

deflection. However, MD is limited to a number of 

atoms 109 and it required a high cost computation. 

In recent years, elastic continuum models are 

employed as effective and successful theories to 

study mechanical and physical properties of CNT’s 

[3, 4]. Nonlocal elasticity theory [5] models has 

been extensively used to model CNTs to study the 

nanoscale effects. In this theory, the small scale 

effects are captured by assuming that the stress at 

a point is a function not only of the strain at that 

point but also a function of the strains at all other 

points of the domain. Various works related to 

nonlocal elasticity theory are found in several 

references. Soltani et al. [6] considered the 

nonlocal Euler-Bernoulli elastic beam theory to 

investigate the vibrational behavior of a single-

walled carbon nanotubes (SWCNTs) embedded in 

an elastic medium. Both Winkler-type and 

Pasternak-type models are employed to simulate 

the interaction of the SWNTs with a surrounding 

elastic medium more accurately, they showed that 

the stiffness of the medium due to both Pasternak-
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type and Winkler-type increases, the bending 

stiffness, and the associated resonant frequency 

increases, consequently. Jena and Chakraverty [7] 

investigated the free vibration of SWCNT resting on 

exponentially varying Winkler elastic foundation by 

using DQM, they showed the effect of non-uniform 

parameter, nonlocal parameter, aspect ratio, 

Winkler modulus parameter and boundary 

condition on the frequency parameter. 

The vibration behavior study of SWCNT’s in 

rotation as cantilever beams has known a great 

interest by researchers, Narendar [8] studied the 

flapwise bending free vibration of a rotating 

cantilever SWCNT. He showed that angular 

velocity parameter has increased the frequency 

parameter, and that the nonlocal parameter effects 

the first mode frequency parameter increasingly 

and the second mode frequency parameter 

decreasingly. 

Belhadj et al. [9] studied the SWCNT 

nanostructure as a rotating nanoshaft, they 

investigated the effect of nonlocal parameter, 

boundary conditions and angular velocity on the 

frequency by showing the Campbell diagram to 

evaluate critical angular velocities.  

The objective of this study is to investigate the 

transverse vibratory behavior of SWCNT under 

different dynamic conditions. A nonlocal elastic 

Euler-Bernoulli beam model was used to study the 

SWCNT first in surrounding Winkler type elastic 

foundation, then this nanostructure was studied as 

a rotating cantilever beam and finally under axial 

rotating inertia as a nanoshaft to examine their 

behavior as nano-rotors for next generation 

rotating nano-machinery applications [10].  

2. ERINGEN’S THEORY OF NONLOCAL 

ELASTICITY 

Eringen [11] has introduced the theory of non-local 

elasticity to account for the small-scale effect. 

Unlike the classical theory of elasticity, the non-

local theory consider long-range inter-atomic 

interaction and yields results dependent on the size 

of a body. In the following, the simplified form of the 

Eringen’s nonlocal constitutive equation is 

employed: 

                         (1 − (𝑒0𝑎)
2𝛻2)𝜎𝑛𝑙 = 𝜎𝑙       

where 𝛻2 is the Laplacian operator, (𝑒0𝑎)
2 is 

nonlocal parameter,  

a - internal characteristic length,  

e0 - constant, 

nl - non local, 

l   - local. 

3. TRANSVERSE VIBRATION OF SWCNT 

In the present paper, a single walled carbon 

nanotube designed using Nanotube Modeller 

(Figures 1, 2 and 3) is modelled mathematically 

based on Euler-Bernoulli beam model. The 

displacement field of at a point of the beam can be 

expressed as: 

 𝑢𝑥(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤(𝑥,𝑡)

𝜕𝑥
                                    (1) 

 

 𝑢𝑦(𝑥, 𝑡) = 0                                                            (2) 

 

 𝑢𝑧(𝑥, 𝑡) = 𝑤(𝑥, 𝑡)                                                     (3) 

 

𝑢𝑥(𝑥, 𝑡), 𝑢𝑦(𝑥, 𝑡) and 𝑢𝑧(𝑥, 𝑡) are the axial and the 

transverse displacement component at the mid-

plane respectively. The linear strain-displacement 

relations for the curved Euler-Bernoulli beam are 

expressed as: 

 𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2
                                           (4) 

 𝜀𝑧𝑧 = 𝜀𝑥𝑧 = 0                                                                           

 

According to the nonlocal elasticity theory it is 

assumed that the stress at a point is a function of 

strains at all points in the continuum. the nonlocal 

constitutive behaviour of a Hooken solid is 

represented by the following differential 

constitutive relation: 

 

[1 − (𝑒. 𝑎)2𝛻2]𝜎𝑛𝑙 = 𝜎𝑙                                              (5) 

 

where 𝛻2 is the Laplacian operator, (𝑒. 𝑎)2 is the 

nonlocal parameter.  

a - internal characteristic length,  

e0 - constant, 

nl - non local, 

l  -  local. 

The equation of motion of free vibration of a 

single walled carbon nanotube (SWCNT) is 

obtained after deriving the governing equations 

using Hamilton’s principle as: 

 

     𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼 

𝜕4𝑤

𝜕𝑥4
= 0                                                    (6) 
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𝑤 (x,t) is the transverse  deflection of the SWCNT, 

E, I and A are the elastic modulus, the moment of 

inertia, and the cross section  respectively. 

Assumption the nanotube has a constant cross 

section, the equation (6) can be written as: 

 

     ф(4)(𝑥) − 𝛽4ф(𝑥) = 0                                                  (7) 

 

Where ф(x) is the mode shape (Eigen-shape) 

 

        𝛽4 =
𝜌𝐴𝜔2  

𝐸𝐼
                                                            (8) 

The analytical solution of the equation (7) is 

 

ф(𝑥) = 𝐶1 𝑠𝑖𝑛(𝛽𝑥) + 𝐶2 𝑐𝑜𝑠(𝛽𝑥) +𝐶3𝑠𝑖𝑛ℎ(𝛽𝑥) +

𝐶4𝑐𝑜𝑠(𝛽𝑥)                        (9) 

                                                                  

𝐶1, 𝐶2 , 𝐶3 and 𝐶4 are the constants depending on 

boundary conditions. 

3.1. SWCNTs embedded in an elastic medium 

In this section, the SWCNT is considered to be 

embedded in an elastic medium of Winkler- type 

elastic foundation (Figure 1). 

By introducing the elastic medium, the equation (6) 

become:  

 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2
+ 𝐸𝐼 

𝜕4𝑤

𝜕𝑥4
= 𝑃(𝑥)                                              (10) 

 

P(x) is the pressure acting on the CNT due to the 

surrounding elastic medium which is opposite to 

the deflections of CNT,  

 

 𝑃(𝑥) =  −𝑘𝑤                                                      (11) 

 

    k: is the spring constant relative to the elastic 

medium described as a Winkler-type elastic 

foundation. 

By introducing the non-local elasticity theory, we 

obtain the following governing equation: 

 

𝜌𝐴 [
𝜕2𝑤

𝜕𝑡2
− (𝑒0𝑎)

2𝛻2
𝜕2𝑤

𝜕𝑡2
] + 𝐸𝐼 

𝜕4𝑤

𝜕𝑥4
+ 𝐾[𝑤 −

(𝑒0𝑎)
2𝛻2𝑤] = 0                                                 (12) 

 

Where:               

              𝑤(𝑥, 𝑡) = 𝑊. 𝑒𝑖𝜔𝑡 

 

In order to investigate the dynamic parameters we 

rewrite the governing equation in a dimensionless 

form by introducing the following no dimensionless 

quantities: 

 

𝛺2 =
𝜌𝐴𝜔2𝐿4

𝐸𝐼
 ,   𝐾 =  

𝑘𝐿4

𝐸𝐼
,   µ =

𝑒0𝑎

𝐿
, 𝜉 =

𝑥

𝐿
 

3.2. SWCNTs as a rotating cantilever beam 

In this section, a rotating cantilever nanobeam 

based SWCNT is studied (Figure 2). Flexural 

vibration equation based on the bending moment 

M and the shear force Q are expressed as: 

 
∂𝑄

∂x
= 𝜌𝐴�̈�                                                                          (13) 

               
𝜕𝑀

𝜕𝑥
+ (𝑇(𝑥)

𝜕𝑤

𝜕𝑥
) = 𝜌𝐴�̈�                                              (14) 

 

With 𝑄 = ∫ 𝜎𝑥𝑥
 

𝐴
𝑑𝐴  

 

Figure 1. SWCNT embedded in an elastic medium. 
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𝑀 = ∫ 𝑧
 

𝐴
𝜎𝑥𝑥𝑑𝐴                                                                 (15) 

 

T(x) the axial force due to centrifugal stiffening:  

 

𝑇(𝑥) = ∫ ρAΩ2(𝑥 + 𝑅)𝑑𝑥
L

x
                                   (16) 

 

By applying nonlocal elastic theory, we obtain: 

 

𝑄 − (𝑒0𝑎)
2 𝑑

2𝑄

𝑑𝑥2
= 𝐸𝐴

𝑑𝑢

𝑑𝑥
                                           (17) 

 

𝑀 − (𝑒0𝑎)
2 𝑑

2𝑀

𝑑𝑥2
= 𝐸𝐼

𝑑2𝑤

𝑑𝑥2
                                           (18) 

 

The following nondimensional parameters are 

employed to execute the investigation: 

𝛺2 =
𝜌𝐴𝜔2𝐿4

𝐸𝐼
 ,   µ =

𝑒0𝑎

𝐿
, 𝜉 =

𝑥

𝐿
 

The angular velocity parameter 𝛾2 =
𝜌𝐴𝛺2𝐿4

𝐸𝐼
  the 

hubradius 𝛿 =
𝑥

𝐿
 

3.3. SWCNTs as a rotating shaft 

A SWCNT structure (Figure.3) is modelled via 

Euler-Bernoulli beam theory under rotating inertia, 

its governing equations are derived based on 

Hamilton’s principle that considers the motion of an 

elastic structure during time is reduced to zero by 

 

Figure 3. Geometry of a spinning SWCNT shaft. 
 

 

Figure 2. SWCNT as a rotating cantilever beam 
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combining the virtual displacements and virtual 

forces. 

 

∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝐾)𝑑𝑡 = 0 
𝑡2

𝑡1
                                          (19) 

 

Where:  

 

𝛿𝑈 = ∫ (𝑁𝑥𝑥
𝜕𝛿𝑢

𝜕𝑥
−𝑀𝑦 

𝜕2𝛿𝑣

𝜕𝑥2
−𝑀𝑧 

𝜕2𝛿𝑤

𝜕𝑥2
) 𝑑𝑥

𝐿

0
           (20) 

 

is the variation of the strain energy. Whereas the 

variation of kinetic energy is: 

 

𝐾 =
1

2
∫

{
 
 

 
 𝜌𝐴 [�̇�

𝜕𝛿𝑢

𝜕𝑡
+ �̇�

𝜕𝛿𝑣

𝜕𝑡
+ �̇�

𝜕𝛿𝑤

𝜕𝑡
]  +

𝜌𝐼 {
𝜕2𝑣

𝜕𝑡𝜕𝑥

𝜕2𝛿𝑣

𝜕𝑡𝜕𝑥
+

𝜕2𝑣

𝜕𝑡𝜕𝑥

𝜕2𝛿𝑣

𝜕𝑡𝜕𝑥
} +

2𝛺 (
𝜕𝛿�̇�

𝜕𝑥

𝜕𝑤

𝜕𝑥
−

𝜕𝛿�̇�

𝜕𝑥

𝜕𝑣

𝜕𝑥
) + 2𝛺2 }

 
 

 
 

𝐿

0
𝑑𝑥       (21) 

 

ρ is the mass density, A is the cross section, I is the 

moment of inertia about cross section, and Ω is the 

angular velocity of the rotating nanostructure. 

By applying the theory of nonlocal elasticity, we 

obtained: 

 

𝜌𝐴 [�̈� − (𝑒. 𝑎)2
𝑑2�̈�

𝑑𝑥2
] = 𝐸𝐴

𝑑2𝑢

𝑑𝑥2
                               (22) 

 

𝜌𝐴 [�̈� − (𝑒. 𝑎)2
𝑑2�̈�

𝑑𝑥2
] + 𝜌𝐼 [�̇� − (𝑒. 𝑎)2

𝑑2�̇�

𝑑𝑥2
] −

 2𝛺 (�̇� − (𝑒. 𝑎)2
𝑑2�̇�

𝑑𝑥2
) = 𝐸𝐼

𝑑4𝑣

𝑑𝑥4
                           (23) 

 

𝜌𝐴 [�̈� − (𝑒. 𝑎)2
𝑑2�̈�

𝑑𝑥2
] + 𝜌𝐼 [�̇� − (𝑒. 𝑎)2

𝑑2�̇�

𝑑𝑥2
] +

 2𝛺 (�̇� − (𝑒. 𝑎)2
𝑑2�̇�

𝑑𝑥2
) = 𝐸𝐼

𝑑4𝑤

𝑑𝑥4
                            (24) 

 

Where, the three-directional deflection is defined 

as: 

    𝑢(𝑥, 𝑡) = 𝑢𝑒𝑖𝜔𝑡 , 𝑣(𝑥, 𝑡) = 𝑣𝑒𝑖𝜔𝑡 , 𝑤(𝑥, 𝑡) = 𝑤𝑒𝑖𝜔𝑡    

4. APPLICATION OF GENERALIZED 

DIFFERENTIAL QUADRATURE METHOD 

(GDQM)  

Bellman et al. [12] have firstly introduced 

differential quadrature method, a new partial 

technique called generalized differential 

quadrature method (GDQM) was proposed by Shu 

and Richard [13] to solve applied mechanics 

problems. In this paper, GDQM is used to 

discretize the differential equations. 

The philosophy of DQM is based on computing 

the derivatives of the functions constituting the 

governing equation. Each derivative is formulated 

by a sum of values at its neighboring points.  

 

|
𝑑𝑛𝑓

𝑑𝑥𝑛
|
𝑥=𝑥𝑖

= ∑ 𝐶𝑖𝑗
(𝑛)𝑁

𝑗=1 𝑓(𝑥𝑗)          𝑖 = 1,2, …𝑁; 𝑛 =

1,2, …𝑁 − 1                                                       (25)  

                            

Where 𝐶𝑖𝑗
(𝑛) is the weighting coefficient of the nth 

order derivative, and N the number of grid points of 

the whole domain, (𝑎 = 𝑥1, 𝑥2, … 𝑥𝑖 , … 𝑥𝑁 = 𝑏).  

According to Shu and Richard rule [13], the 

weighting coefficients of the first-order derivatives 

in direction 𝜉, (𝜉 =
𝑥

𝐿
) are determined as: 

 

𝐶𝑖,𝑗
(1) =

𝑃(𝜉𝑖)

(𝜉𝑖−𝜉𝑗).𝑃(𝜉𝑗)
  𝑖, 𝑗 = 1,2…𝑁 , 𝑖 ≠ 𝑗                                                                                                          

(26) 

𝐶𝑖,𝑗
(1) = −∑ 𝐶𝑖,𝑗

(1)𝑁
𝑗=1
𝑗 ≠𝑖 

                                                               

 

Where: 𝑃(𝜉𝑖) = ∏ (𝜉𝑖−𝜉𝑗)
𝑁
𝑗=1      𝑖 ≠ 𝑗                                    

The second and the higher order derivatives can 

be computed as: 

 

𝐶𝑖,𝑗
(2) = ∑ 𝐶𝑖,𝑘

(1). 𝐶𝑘,𝑗
(1)𝑁

𝑘=1          𝑖 = 𝑗 = 1,2…𝑁.                                                                                                                                 

(27) 

𝐶𝑖,𝑗
(𝑟) =∑𝐶𝑖,𝑘

(1). 𝐶𝑘,𝑗
(𝑟−1)

𝑁

𝑘=1

       𝑖 = 𝑗 = 1,2…𝑁.       

r = 2,3…m (m < N)     

 

Throughout the paper, the grid pints are assumed 

based on the well-established Chebyshev-Gauss-

Lobatto points  

 

𝜉𝑖 =
1

2
(1 − 𝑐𝑜𝑠

(𝑖−1)𝜋

𝑁−1
)   𝑖 = 1,2…𝑁                      (28) 

 

the boundary conditions used for the free vibration 

of rotating nonlocal shaft are: 

 

Simply supported beam 

  

 𝑤(𝜉 = 0) =
𝜕2𝑤(𝜉=0)

𝜕𝜉2
= 0   and   𝑤(𝜉 = 1) =

𝜕2𝑤(𝜉=1)

𝜕𝜉2
= 0                                                       (29)     
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Clamped-Clamped beam 

 𝑤(𝜉 = 0) =
𝜕𝑤(𝜉=0)

𝜕𝜉
= 0   and    𝑤(𝜉 = 1) =

𝜕𝑤(𝜉=1)

𝜕𝜉
= 0                                                        (30) 

 

Simply supported-Clamped beam 

𝑤(𝜉 = 0) =
𝜕2𝑤(𝜉=0)

𝜕𝜉2
= 0    and 𝑤(𝜉 = 1) =

𝜕𝑤(𝜉=1)

𝜕𝜉
= 0                                                       (31) 

 

5. RESULTS AND DISCUSSIONS 

In this section, results of our study are reported 

here after solving a complex Eigen problem by 

developing a Matlab code using GDQM technique. 

The nonlocal governing differential equation is 

solved using sufficient numbers of grid points which 

is taken as 15 as prove our previous studies. The 

effects of elastic medium, of small-scale parameter 

or nonlocal parameter, lower and higher angular 

velocities are investigated and the related graphs 

are plotted. For the present study, the properties of 

the nonlocal nanobeams are considered that of a 

SWCNT. An armchair SWCNT with chirality (5,5) is 

considered. With a Young’s modulus E=2.1 TPa, 

the length- radius ration is taken as L=80d, d=1nm,  

a density 𝜌=7800kg/m3,and a moment of inertia  

I=πd4/64. 

The validation of our results have been insured 

by comparing the flexural frequency parameters 

with Chakraverty [14] results for simply supported 

beam simply supported beam. Table 1 shows that 

the first four frequency parameters computed by as 

 

Figure 4. First four natural frequencies versus the length. 
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 4th

Table 1. Comparison of First four frequency parameters of Euler-Bernoulli nanobeam for different 
boundary conditions and scaling effect parameters. 

 

 µ2 = 0 µ2 = 0.3 µ2 = 0.5 

 

 

SS 

Present 

3.1416 

6.2832 

9.4243 

15.5035 

Chakraverty[14]  

3.1416 

6.2832 

9.4248 

15.5665 

Present 

2.6800 

4.3013 

5.4413 

6.3646 

Chakraverty 

2.6800 

4.3013 

5.4422 

6.3633 

Present 

2.3022 

3.4404 

4.2885 

4.9731 

Chakraverty 

2.3022 

3.4604 

4.2941 

4.9820 
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present good agreement with those cited in 

literature. 

 

5.1. SWCNT embedded in an elastic foundation 

 

For the SWCNT resting on Winkler elastic 

foundation, natural frequencies are computed and 

valuated to be considerably higher (Tera-hertz) due 

to exceptional mechanical properties that offer 

CNTs. The figure 4 shows the first four natural 

frequencies along the SWCNT for a simply 

supported-clamped beam boundary condition, it is 

remarkable that the four frequencies are 

distinguished in the beginning of the nanobeam, 

and they are converged in the end of the SWCNT. 

Whereas the first fundamental frequency is 

approximatively, uniform. 

The figure.5 illustrates the effect of non-local 

parameter on the vibrational dimensionless 

frequency response for different boundary 

conditions, it shows that the frequency response for 

Clamped-Clamped beam is higher than that of 

simply supported-clamped and simply supported 

beam. The frequency response for a spring 

constant 𝐾 null is higher than that with a higher 𝐾, 

which improves the inverse relationship between 

the dimensionless frequency 𝛺 and 𝐾. 

 

5.2. SWCNT as a rotating cantilever nanobeam 

 

For rotating cantilever nanobeam, as the angular 

velocity parameter increases the fundamental 

frequency parameter also increases. This 

observation is found to be similar for both the local 

and nonlocal elastic models. The increase in 

frequency with angular velocity is attributed to the 

stiffening effect of the centrifugal force, which is 

directly proportional to the square of the angular 

velocity. These remarks are valid only for the 

fundamental frequency parameter (Figure 6) where 

the frequency parameter increases with the 

increase of both angular velocities parameters and 

nonlocal parameters. For the higher mode 

frequency parameter, these remarks are invalid.  

Figure 7 shows that the second mode frequency 

parameters are increasing when the angular 

velocity parameters increase but they decrease 

when the nonlocal elastic parameter increases. 

The small scale effect on the vibration response is 

amplified at high angular velocity of SWCNT. The 

higher frequency at amplified zone is due to the 

coupling effect of both rotational speed and 

nonlocal parameter.  

 

 

Figure 5. Variation of frequency parameters with nonlocal parameter for different elastic foundations. 
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5.3. SWCNT as a rotating nanoshaft 

 

     In this section, the rotation of the SWCNT 

nanobeam is considered. The investigation of the 

vibration behaviour of the nanorotor [15] will be 

done by solving the global Eigen problem 

expressed as: 

 

  (−𝜆2[𝑀] + 𝑗𝜆[𝐺] + 𝐾). (𝑈, 𝑉,𝑊)𝑇 = 0           (25) 

 

G is the gyroscopic matrix, j2=-1. 

 

Figure 6. First frequency parameter versus angular velocity. 
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Figure 7. First frequency parameter versus angular velocity. 
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The Campbell diagram is employed to determine 

the critical speed λCr where the nanorotor vibrates 

violently, it is the rotating speed correspondent to 

the intersection of the frequency curves and the 

angular velocities curves(λ=γ). 

     Figure 8 shows the Campbell diagram for 

different boundary conditions for a nonlocal 

nanobeam µ2=0.3. It is showed that the 

fundamental frequency have a linear relationship 

with angular velocities, the angular velocity 

parameters have increased the fundamental 

frequencies; the increasing frequency is the 

forward frequency, whereas the decreasing one is 

the backward frequency. It is also remarked that 

the C-C frequencies are higher than those of SS-C 

and SS boundary conditions, this difference in 

results is due to the effect of boundary conditions 

on the stiffness matrix that changes the eigenvalue 

decomposition of the system matrix.  

5. CONCLUSION 

In this paper, a computational structural dynamic 

analysis based on Eringen’s elastic constitutive 

model is done to investigate the free vibration of 

SWCNT nanostructure under three structural 

dynamic situations: first this nanostructure is 

studied resting on an elastic foundation of Winkler 

type, second the nanostructure is examined 

rotating around its transverse axis as a cantilever 

beam, then rotating as a nanoshaft around its axial 

axis. 

The discretisation and the resolution of 

governing equations of motion that are derived 

based on Hamilton principles, is worked out by 

using the semi-analytical technique, generalized 

differential quadrature method (GDQM) that is 

highly recommended for structural 

nanomechanical problems. 

Results obtained from this study are summarized 

as following: 

• At nanoscale, nonlocal elasticity with other 

non-classical elastic theories are employed 

to model the problem. 

• CNT’s offer exceptional mechanical 

properties that are highly required in 

nanotechnology applications, in particularly 

next generation rotating nano-machinery. 

 

Figure 8. First frequency parameter versus angular velocity. 
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• For SWCNT resting in elastic foundations, 

the elastic medium decreases their 

frequency parameters. 

• For rotating cantilever nanobeam, angular 

velocity parameter increases the 

fundamental frequency parameter, so the 

nonlocal parameter does for fundamental 

frequency. A high order mode of vibration 

inversed the effect of nonlocal parameter. 

• For the SWCNT nanorotor, Rotary inertia of 

the SWCNT nanostructure have split the 

frequency parameter to forward and 

backward frequencies (Campbell diagram). 

• The increased critical speed parameter 

influences the forward frequency parameter 

increasingly and the backward frequency 

parameter decreasingly. The small scale 

parameter has a significant effect on the 

dynamic parameters, it decreases the 

frequency parameters as it increases. 
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