Supplementary material

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Almeida D, Santos J, Marques J, Leitão R (2023). Exploratory and Inferential Analysis of Children's Eye Defects Screening in the Region of Aveiro. Journal of Statistics on Health Decision, 5(2), e31543. https://doi.org/10.34624/jshd.v5i2.31543; published online June 1, 2023.

Exploratory and Inferential Analysis of Children's Eye Defects Screening in the Region of Aveiro

Figure 1. Bar chart with the distribution of the results of the visual exam in the 4 years (2019-2022) of the CEDS. In total, there were 6341 tests performed.

Table 1. Description of the variables in the CEDS database.

Variable	Type
"Municipality"	Character
"Functional Unit"	Character
"Number of Requests Generated"	Numeric
"Number of Screening Attendances"	Numeric
"Number of Reports"	Numeric
"Number of Positive Result Reports"	Numeric
"Number of Negative Result Reports"	Numeric
"Number of Non-classifiable Result Reports"	Numeric
"Year"	Numeric

Table 2. Results of the Kruskal-Wallis test to compare differences between the primary care health centres.

Characteristic	Águeda, $\mathrm{N}=4^{1}$	Albergaria-A- Velha, $\mathrm{N}=\mathbf{4}^{1}$	Anadia, $\mathrm{N}=\mathrm{4}^{1}$	Aveiro, $\mathrm{N}=\mathbf{4}^{1}$	$\begin{aligned} & \text { Estarreja, } N= \\ & 4^{1} \end{aligned}$	ílhavo, $\mathrm{N}=\mathrm{4}^{1}$	$\begin{aligned} & \text { Murtosa, } \mathrm{N}= \\ & 4^{1} \end{aligned}$	Oliveira Do Bairro, $\mathrm{N}=4^{1}$	Ovar, $\mathrm{N}=4^{1}$	Sever Do $\text { Vouga, } \mathrm{N}=4^{1}$	Vagos, $\mathrm{N}=\mathrm{4}^{1}$	P-Value ${ }^{2}$	Q-Value ${ }^{\text {3 }}$
Number Of Requests Generated	$\begin{aligned} & 0.48(0.35, \\ & 0.61) \end{aligned}$	$\begin{aligned} & 0.52(0.38, \\ & 0.63) \end{aligned}$	$\begin{aligned} & 0.48(0.34, \\ & 0.61) \end{aligned}$	$\begin{aligned} & 0.50(0.36, \\ & 0.61) \end{aligned}$	$\begin{aligned} & 0.48(0.36, \\ & 0.60) \end{aligned}$	$\begin{aligned} & 0.46(0.34, \\ & 0.58) \end{aligned}$	$\begin{aligned} & 0.48(0.34, \\ & 0.63) \end{aligned}$	$\begin{aligned} & 0.50(0.37, \\ & 0.61) \end{aligned}$	$\begin{aligned} & 0.49(0.34, \\ & 0.63) \end{aligned}$	$\begin{aligned} & 0.41(0.28, \\ & 0.57) \end{aligned}$	$\begin{aligned} & 0.48(0.34, \\ & 0.62) \end{aligned}$	>0.9	>0.9
Number of Screening Attendances	$\begin{aligned} & 0.29(0.19, \\ & 0.37) \end{aligned}$	$\begin{aligned} & 0.35(0.25, \\ & 0.42) \end{aligned}$	$\begin{aligned} & 0.26(0.19, \\ & 0.33) \end{aligned}$	$\begin{aligned} & 0.31(0.22, \\ & 0.41) \end{aligned}$	$\begin{aligned} & 0.29(0.21, \\ & 0.36) \end{aligned}$	$\begin{aligned} & 0.32(0.20, \\ & 0.47) \end{aligned}$	$\begin{aligned} & 0.29(0.22, \\ & 0.35) \end{aligned}$	$\begin{aligned} & 0.30(0.20, \\ & 0.37) \end{aligned}$	$\begin{aligned} & 0.26(0.14, \\ & 0.39) \end{aligned}$	$\begin{aligned} & 0.24(0.18, \\ & 0.33) \end{aligned}$	$\begin{aligned} & 0.36(0.25, \\ & 0.46) \end{aligned}$	>0.9	>0.9
Number Of Reports	$\begin{aligned} & 0.27(0.17, \\ & 0.36) \end{aligned}$	$\begin{aligned} & 0.25(0.21, \\ & 0.29) \end{aligned}$	$\begin{aligned} & 0.25(0.18, \\ & 0.25) \end{aligned}$	$\begin{aligned} & 0.30(0.22, \\ & 0.39) \end{aligned}$	$\begin{aligned} & 0.20(0.15, \\ & 0.26) \end{aligned}$	$\begin{aligned} & 0.25(0.15, \\ & 0.44) \end{aligned}$	$\begin{aligned} & 0.13(0.10 \\ & 0.17) \end{aligned}$	$\begin{aligned} & 0.30(0.22, \\ & 0.31) \end{aligned}$	$\begin{aligned} & 0.23(0.14, \\ & 0.28) \end{aligned}$	$\begin{aligned} & 0.19(0.15, \\ & 0.20) \end{aligned}$	$\begin{aligned} & 0.26(0.18 \\ & 0.42) \end{aligned}$	0.9	>0.9
Number Of Positive Result Reports	$\begin{aligned} & 0.026 \text { (} 0.012 \text {, } \\ & 0.037) \end{aligned}$	$\begin{aligned} & 0.020(0.013, \\ & 0.029) \end{aligned}$	$\begin{aligned} & 0.023(0.015, \\ & 0.026) \end{aligned}$	$\begin{aligned} & 0.027 \text { (} 0.014 \text {, } \\ & 0.041) \end{aligned}$	$\begin{aligned} & 0.019(0.010, \\ & 0.028) \end{aligned}$	$\begin{aligned} & 0.026(0.020, \\ & 0.048) \end{aligned}$	$\begin{aligned} & 0.010(0.007, \\ & 0.010) \end{aligned}$	$\begin{aligned} & 0.025(0.016, \\ & 0.030) \end{aligned}$	$\begin{aligned} & 0.026(0.016, \\ & 0.032) \end{aligned}$	$\begin{aligned} & 0.022(0.015, \\ & 0.026) \end{aligned}$	$\begin{aligned} & 0.035(0.028 \\ & 0.041) \end{aligned}$	0.5	>0.9
Number of Negative Result Reports	$\begin{aligned} & 0.24(0.15, \\ & 0.32) \end{aligned}$	$\begin{aligned} & 0.23(0.19, \\ & 0.26) \end{aligned}$	$\begin{aligned} & 0.21(0.16, \\ & 0.22) \end{aligned}$	$\begin{aligned} & 0.27(0.20, \\ & 0.35) \end{aligned}$	$\begin{aligned} & 0.18(0.14, \\ & 0.23) \end{aligned}$	$\begin{aligned} & 0.23(0.13, \\ & 0.39) \end{aligned}$	$\begin{aligned} & 0.12(0.08, \\ & 0.16) \end{aligned}$	$\begin{aligned} & 0.26(0.19, \\ & 0.28) \end{aligned}$	$\begin{aligned} & 0.20(0.12, \\ & 0.25) \end{aligned}$	$\begin{aligned} & 0.16(0.13, \\ & 0.18) \end{aligned}$	$\begin{aligned} & 0.23(0.15, \\ & 0.37) \end{aligned}$	0.9	>0.9
Number of Not Classifiable Result Reports	0.0034 (0.0021, 0.0072)			0.0032 $(0.0015$, $0.0052)$	0.0000 $(0.0000$, $0.0013)$			0.0042 $(0.0023$, $0.0062)$		0.0000 $(0.0000$, $0.0000)$		0.2	>0.9
${ }^{1}$ Median (IQR)													
${ }^{2}$ Kruskal-Wallis rank sum test													
${ }^{3}$ False discovery rate correction for multiple testing													

Table 3. Results of the Kruskal-Wallis test to compare differences between the years.

Characteristic	2019, $\mathrm{N}=11^{1}$	2020, $\mathrm{N}=11^{1}$	2021, $\mathrm{N}=11^{1}$	2022, $\mathrm{N}=11^{1}$	P -Value ${ }^{2}$	Q-Value ${ }^{3}$
Number Of Requests Generated	$\begin{aligned} & 0.50(0.46 \\ & 0.51) \end{aligned}$	$\begin{aligned} & 0.48(0.46, \\ & 0.49) \end{aligned}$	$\begin{aligned} & 0.00(0.00, \\ & 0.00) \end{aligned}$	$\begin{aligned} & 0.95(0.93, \\ & 0.96) \end{aligned}$	<0.001	<0.001
Number Of Screening Attendances	$\begin{aligned} & 0.32(0.28, \\ & 0.33) \end{aligned}$	$\begin{aligned} & 0.28(0.25, \\ & 0.32) \end{aligned}$	$\begin{aligned} & 0.00(0.00, \\ & 0.00) \end{aligned}$	$\begin{aligned} & 0.56 \text { (} 0.52, \\ & 0.61) \end{aligned}$	<0.001	<0.001
Number Of Reports	$\begin{aligned} & 0.26(0.16, \\ & 0.32) \end{aligned}$	$\begin{aligned} & 0.16(0.00, \\ & 0.22) \end{aligned}$	$\begin{aligned} & 0.22 \text { (} 0.11, \\ & 0.30) \end{aligned}$	$\begin{aligned} & 0.26(0.24, \\ & 0.57) \end{aligned}$	0.032	0.049
Number Of Positive Result Reports	$\begin{aligned} & 0.020(0.012, \\ & 0.030) \end{aligned}$	$\begin{aligned} & 0.015(0.000, \\ & 0.027) \end{aligned}$	$\begin{aligned} & 0.019(0.009, \\ & 0.030) \end{aligned}$	$\begin{aligned} & 0.030(0.026, \\ & 0.047) \end{aligned}$	0.052	0.062
Number Of Negative Result Reports	$\begin{aligned} & 0.23(0.15, \\ & 0.28) \end{aligned}$	$\begin{aligned} & 0.13 \text { (} 0.00 \text {, } \\ & 0.19 \text {) } \end{aligned}$	$\begin{aligned} & 0.20(0.10, \\ & 0.28) \end{aligned}$	$\begin{aligned} & 0.24 \text { (0.21, } \\ & 0.51) \end{aligned}$	0.033	0.049
Number Of Not Classifiable Result Reports	$\begin{aligned} & 0.0000 \\ & (0.0000, \\ & 0.0024) \end{aligned}$	$\begin{aligned} & 0.0000 \\ & (0.0000, \\ & 0.0037) \end{aligned}$	0.0011 (0.0000, 0.0030)	0.0054 (0.0006, 0.0090)	0.13	0.13
${ }^{1}$ Median (IQR) ${ }^{2}$ Kruskal-Wallis ${ }^{3}$ False Discover	Rank Sum Test Rate Correctio	for Multiple Te				

Table 4. Results of the Wilcoxon Test to compare differences between the functional units.

Characteristic	USCP, $\mathrm{N}=57^{1}$	USF, $\mathrm{N}=104^{1}$	P-Value ${ }^{2}$	Q-Value ${ }^{\text {3 }}$
Number Of Requests Generated	$\begin{aligned} & 0.47(0.29, \\ & 0.80) \end{aligned}$	$\begin{aligned} & 0.49(0.00, \\ & 0.85) \end{aligned}$	0.7	0.7
Number Of Screening Attendances	$\begin{aligned} & 0.29(0.18, \\ & 0.45) \end{aligned}$	$\begin{aligned} & 0.30(0.00, \\ & 0.44) \end{aligned}$	0.6	0.7
Number Of Reports	$\begin{aligned} & 0.24(0.14, \\ & 0.32) \end{aligned}$	$\begin{aligned} & 0.26(0.13, \\ & 0.36) \end{aligned}$	0.7	0.7
Number Of Positive Result Reports	$\begin{aligned} & 0.019(0.000, \\ & 0.039) \end{aligned}$	$\begin{aligned} & 0.021 \text { (} 0.009, \\ & 0.037) \end{aligned}$	0.7	0.7
Number Of Negative Result Reports	$\begin{aligned} & 0.23(0.13, \\ & 0.27) \end{aligned}$	$\begin{aligned} & 0.23 \text { (} 0.11 \text {, } \\ & 0.32 \text {) } \end{aligned}$	0.6	0.7
Number Of Not Classifiable Result Reports	$\begin{aligned} & 0.000(0.000, \\ & 0.005) \end{aligned}$	$\begin{aligned} & 0.000(0.000, \\ & 0.001) \end{aligned}$	0.7	0.7
${ }^{1}$ Median (IQR) ${ }^{2}$ Wilcoxon Rank ${ }^{3}$ False Discove	Sum Test	for Multiple Tes		

