

Article in early access

Articles in early access are accepted and revised articles that have not yet passed the editing, pagination and proofreading, but they can be cited (see below). When the final version of the article is available the early access version will be removed.

Note: the editing, pagination and proofreading process may lead to differences between the in press and final versions.

How to cite:

Ferreira, G., Afreixo, V., Iutis, A., & Silva, R. (2022). Meta-analysis of Chemical exposure and increased risk of hematologic malignancies. *Journal of Statistics on Health Decision*, *4*(2), e24961. https://doi.org/10.34624/jshd.v4i2.24961

Published online: December 30, 2022.

Meta-analysis of Chemical exposure and increased risk of hematologic

malignancies.

Ferreira, G., Afreixo, V., Iutis, A., & Silva, R.

1	Meta-analysis of Chemical exposure and increased risk of hematologic
2	malignancies.
3	Gisela Ferreira ^{1,2} , Vera Afreixo ³ , Adela Iutis ⁴ , Raquel M Silva ^{2,5}
4	¹ Centro Hospitalar do Baixo Vouga, EPE, Aveiro, Portugal
5 6	² Department of Medical Sciences & iBiMED-Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
7	³ Department of Mathematics, CIDMA & iBiMED, University of Aveiro, Aveiro, Portugal
8	⁴ Department of Mathematics, University of Aveiro, Aveiro, Portugal
9 10	^o Universidade Catolica Portuguesa, Faculdade de Medicina Dentaria, Centro de Investigação Interdisciplinar em Saúde, Viseu, Portugal
11	
12	Correspondence to: Raquel M. Silva
13 14	Universidade Católica Portuguesa, Faculdade de Medicina Dentária Estrada da Circupyalação, 3504-505 Viseu, Portugal
15	rmsilva@ucp.pt
16	
17	Disclosures
18	The authors declare no conflict of interest.
19 20	This research did not receive any specific grant from funding agencies in the public,
20	
22	
23	Meta-analysis of Chemical exposure and increased risk of hematologic
24	malignancies.
25	Abstract
26	Background: Exposure to environmental risk factors may be associated with the
27	development of hematologic malignancies, as pointed by evidence in the literature.
28	Despite this, most studies refer to a specific risk factor or disease.
29	Objective: To assess this issue globally, in this study we performed a meta-analysis.
30	Methods: A searched PubMed database was done in 2020 and a selection of 35 case-
31	control and cohort studies published between 1990 and 2020 was done.
32	Results: Was observed a significant adverse association between exposure to organic
33	solvents such as benzene and incidence of myeloid malignancies. For agricultural

34	chemicals (pesticides, herbicides, insecticides), an adverse association was found for
35	both lymphoid and myeloid malignancies.
36	Conclusions: The results suggest that activities in chemical industries or agriculture
37	pose greater risk and should be closely monitored. Prospective occupational surveys
38	are needed to identify exposure-response relationships and clarify disease
39	mechanisms.
40	
41	Keywords: lymphoid; myeloid; risk; benzene; agriculture; smoking; indoor tanning; paint.
42	
43	Introduction
44	Occupational and lifestyle-related exposures have been suggested as risk factors for
45	the development of a multitude of hematologic malignancies. Generally, the
46	associations tend to increase with longer duration of exposure, so that prolonged
47	follow-ups are usually necessary to validate the exposure-outcome relationship [1].
48	Hematologic malignancies are characterized by the proliferation of clonal mature or
49	immature cells, either myeloid or lymphoid, that tend to have a proliferative advantage
50	opposed to the normal counterpart [2].
51	Chemicals that have been implicated in these diseases include organochlorines and
52	phenoxyacetic acids that are commonly found in pesticides and herbicides [3-6]. For
53	these compounds, in addition to occupational exposure there is a risk of consumption
54	of contaminated food and drinking water [7]. Among environmental exposures, high-
55	level benzene exposure is accepted as a cause of chromosome damage and acute
56	leukemia (AL) [8-10]. Benzene's toxicity is related to cumulative dosage, and the risk of
57	AL and myelodysplastic syndromes (MDS) was high before current occupational safety
58	standards [11, 12].
59	In what concerns lifestyle-related exposures, cigarette smoking was linked to a small
60	increase in risk for acute lymphoblastic leukemia (ALL) among adults [13]. In other two

- ⁶¹ reports, smoking was found to be a risk factor for acute myeloid leukemia (AML) and
- 62 MDS [14, 15]. In addition, there are epidemiologic studies that implicate indoor tanning
- in the development of non-Hodgkin Lymphomas (NHL) [16, 17], however, this
- 64 association was refuted by others [18, 19].
- In the literature, specific jobs and hobbies that are related with an increased risk for the
- 66 development of AML include those manufacturing or exposed to paint or hair dyes [13].
- A number of other factors have been mentioned, including ionizing radiation,
- electromagnetic fields, or alcohol, to name a few, but the data is weak to support an
- association of any of these factors with an increased risk of hematologic neoplasms
- 70 [20-23].
- 71 Although the evidence suggests an association between chemical exposures and
- hematologic malignancies, data is dispersed in the literature and many studies are
- focused on single risk factors, in individual diseases or a specific group of diseases.
- Here, to assess potential associations between exposure to a variety of environmental
- factors and the risk of developing hematologic neoplasms, we performed a meta-
- 76 analysis.
- 77

78 Methods and Statistical analysis

79 Literature search

A literature search was performed in PubMed on the 16th of May 2019, with the

81 keywords "risk factor and cancer and hematologic and (chemical OR pollution OR air

- 82 OR water OR environmental) NOT childhood" with the filter language="English"
- 83 activated, and 592 abstracts were retrieved. The same search was repeated in May
- 2020, and 73 additional abstracts were screened to determine the suitability of each
 publication.
- 86 Of the total 665 works, 595 were excluded because they focused on secondary
- 87 cancers or mentioned consequences and not causes of the cancer, such as

88 microbiological infections in cancer patients; others had no environmental risk factors associated or were not about cancer but rather about hematologic alterations in other 89 90 diseases; some were performed in animal models, referred to solid cancers, to the 91 paediatric population, or were reviews. For the remaining 70 works, the full-text articles 92 were considered, and further 35 were excluded because there were no suitable data 93 (either no cases, controls, or environmental data) (Figure 1). 94 Study selection 95 Studies included in this meta-analysis [3-6, 9, 10, 12-14, 18-43] had to meet all the 96 following criteria: (a) the exposures of interest were chemical (benzene, other 97 solvents), agricultural (pesticide, herbicide) and lifestyle (smoking, paint, indoor tanning); (b) the outcomes of interest were incidence of hematologic malignancies; (c) 98 99 a cohort design or case-control design; (d) provide the risk and corresponding 95% confidence intervals (CIs) or data to calculate these. If there were multiple publications 100 101 from the same study or overlapping study populations, the most recent and detailed 102 study was eligible for inclusion in the meta-analysis. Details of the selected studies are 103 provided in Table 1. 104 Data extraction 105 Data were collected independently by two authors using a predefined data collection 106 form. The following data were extracted from each study and included in the final 107 analysis: the study name (the first author's name and year of publication), country of

108 origin, gender, age, study design, source of patients, number of cases/controls, risk

109 factor assessment, matching covariates, and adjusted covariates. When necessary, the

110 corresponding authors of the primary studies were contacted to obtain missing or

111 insufficient data, and group consensus was used to resolve discrepancies.

112 Statistical analysis

113 When present, all within-study effect sizes were aggregated with agg function from

114 MAD package (agg: Aggregate Dependent Effect Sizes,

https://rdrr.io/cran/MAd/man/agg.html), while considering the correlations among thewithin-study outcomes).

To determine whether to use the fixed- or random-effects model, we measured

statistical heterogeneity. A fixed-effects model was used to calculate a pooled odds

119 ratio (OR) with 95% CI when there was no heterogeneity. Otherwise, we calculated 120 pooled ORs and confidence intervals assuming a random-effects model. The 121 heterogeneity of ORs across individual studies was quantified by the Q statistic and the I2 score. P>0.1 for the Q-test was considered as a lack of heterogeneity among the 122 123 studies. The I2 values of 25%, 50%, and 75% represented mild, moderate, and severe 124 heterogeneity, respectively [44]. 125 Potential publication bias was assessed by using Begg's funnel plots (rank correlation method where an asymmetrical plot suggested possible publication bias) [45] and 126 127 Begg's bias test (a strong correlation implies publication bias P<0.05 indicated the 128 presence of statistically significant publication bias) [46] and by calculating the 'fail-safe N', the number of additional 'negative' studies (studies in which the intervention effect 129 130 was zero) that would be needed to increase the P value for the meta-analysis to above 131 0.05. Sensitivity analysis was conducted, in which the meta-analysis estimates were 132 calculated by sequential omission of every study in turn, so as to reflect the influence of 133 134 the data from individual studies on the pooled ORs and evaluate the stability of the 135 results. Subset analyses were performed by cell lineage type. All the statistical 136 analyses were performed using software R version 3.6.1 © 2019, in RStudio

137 environment Version 1.2.1578© 2009-2019 R Studio, Inc., where P<0.05 was

138 considered statistically significant.

139

117

118

140 Results

141 A total of 35 case-control and cohort studies were included in the present work, on the

142 association of agriculture, chemical and lifestyle exposures with the incidence of

143 hematologic malignancies. These studies were published between 1990 and 2020 and

144 were conducted in Europe, Asia and in the United States.

145

146 *Risk estimation*

- 147 Our analyses demonstrated a significant adverse association between agriculture and
- 148 chemical exposures (exposed vs. non-exposed status) and incidence of hematologic
- malignancies. The results for agriculture exposure (OR = 1.48, 95%Cl 1.26–1.74) are
- shown in Figure 2, and for chemical exposure (OR = 1.75, 95%Cl 1.15–2.28) are
- 151 presented in Figure 3. A statistically significant heterogeneity across studies was
- observed, for agriculture exposure (I2 = 85%, P<0.01) and for chemical exposure (I2 =
- 153 80%, P<0.01), and the summary OR were estimated using the random effects model.
- 154

155 Stratified analysis

We pooled the OR estimates of hematologic malignancies according to the cell type 156 157 (lymphoid and myeloid lineage) and for each group of exposure (agriculture, chemical 158 and lifestyle exposures). In this subset analyses, a statistically significant adverse 159 effect of agriculture exposure on hematologic malignancies was observed for both 160 lymphoid (OR = 1.38, 95%CI 1.11-1.72) and myeloid (OR = 1.79, 95%CI 1.28-2.50) disease groups. For the chemical exposure, a statistically significant adverse effect 161 162 was observed for the myeloid diseases (OR = 2.15, 95%CI 1.63-2.85). In the lifestyle 163 exposure group, a significant adverse effect was observed between smoking and 164 incidence of myeloid diseases (OR = 2.45, 95%CI 1.61-3.73), which was not observed 165 in paint and indoor tanning exposures (Table 2).

166

167 Publication bias

- 168 As reflected by the funnel plot (not shown), Begg's test, no asymmetry was discovered
- 169 for agriculture (Begg's test, P = 0.175), chemical (Begg's test, P = 0.272), smoking
- 170 (Begg's test, P = 0.188), paint (Begg's test, P = 0.09), or indoor tanning (Begg's test, P
- 171 = 0.051).
- 172

173 Sensitivity analysis

- 174 We also carried out sensitivity analysis by sequentially excluding one study at a time to
- 175 detect the influence of a single study on the overall estimate. The results demonstrated
- that no study disproportionately affected the summary risk estimates in this meta-
- analysis. The study-specific ORs were 1.34 (95%CI 1.27-1.40) for agriculture, 1.15
- 178 (95%CI 1.02-1.30) for chemical, 1.03 (95%CI 0.91-1.18) for smoking, 1.12 (95%CI
- 179 0.98-1.27) for paint and 1.01 (95%CI 0.80-1.27) for indoor tanning.
- 180

181 Discussion

182 Indoor and outdoor pollution has been associated with both acute and chronic human

- 183 health conditions, including cancer [7]. We attempted to clarify the possible relationship
- 184 between exposure to chemicals and the risk of developing hematologic malignancies,

185 through a meta-analysis of case-control and cohort studies.

186 The results showed a significant adverse effect of the exposure to chemical

187 compounds used in agriculture and hematologic malignancies. We also demonstrated

188 a significant adverse association between exposure to benzene and other organic

189 solvents. Regarding lifestyle exposures, the effect was observed in smoking but not in

- 190 paint and indoor tanning groups. Our results are consistent with previous findings [19,
- 191 47, 48] but should be interpreted with caution, as there are some limitations in the
- 192 present study. Since we have considered several studies within a timeframe of 30
- 193 years (1990-2020), it can be speculated that enforcement of regulations involving
- 194 occupational exposures has altered the occupational risk profile. On the other hand, we

195	also considered studies with small sample size. By doing this meta-analysis we
196	increased sample size and validated our findings with diverse populations.
197	Finally, one can argue that there is probably a lack of data consistency, which could
198	compromise the ability to pool data in a standardized form. The designations of the
199	different hematologic diseases, as well as their diagnosis, have changed through time,
200	and some authors do not specify which disease is considered in each study. In order to
201	overcome that, we have included several diseases in the same group, according to the
202	cell lineage from which they are originated (either lymphoid or myeloid). The use of
203	data from distinct geographical regions may also contribute to heterogeneity, and the
204	fact that we could observe associations between environmental risk factors and
205	hematologic malignancies, in spite these limitations, strengthens the approach and the
206	results obtained.
207	As discussed previously, the great majority of the epidemiologic studies here
208	considered are observational ones. This prevents the establishment of causal
209	mechanisms between exposure variables and responses of interest.
210	Epidemiologic studies are often flawed because of small sample size and retrospective
211	nature. In fact, there is a clear lack of carefully designed prospective epidemiologic
212	studies, with large cohorts and prolonged follow-up, able to determine the validity of an
213	association between a factor and a specific hematologic malignancy. As such,
214	prospective planning of epidemiologic studies prior to any data collection is crucial to
215	study accuracy. It would be interesting to perform a prospective national occupational
216	survey and identify exposure-response relationships. This would allow to 1) better
217	understand the underlying disease mechanisms triggered by the environment and,
218	ultimately, 2) diminish their occurrence in the first place.

219

220 Acknowledgements

221	This	work was supported by FEDER and FCT ("Fundação para a Ciência e a
222	Tecn	ologia"), within the research unit funding UIDB/04501/2020 (POCI-01-0145-
223	FED	ER-007628) to iBiMED, UID/MAT/04106/2013 to CIDMA, and UIDB/04279/2020
224	and l	JIDP/04279/2020 to CIIS. Thanks are due to FCT/MCTES and UCP for the CEEC
225	instit	utional funding of RMS.
226	Auth	or contributions:
227	Conc	eptualization: GF, VA, RMS. Data curation: GF, AI, RMS. Formal analysis: VA, AI.
228	Meth	odology: VA, AI, RMS. Project administration: VA, RMS. Visualization: AI. Writing
229	– orię	ginal draft: GF, AI. Writing – review & editing: GF, VA, AI, RMS.
230		
231	Refe	rences
232	1.	Descatha A, Jenabian A, Conso F and Ameille J. Occupational exposures and
233		haematological malignancies: overview on human recent data. Cancer Causes
234		Control 2005;16:939-53.
235	2.	Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et
236		al. World Health Organization classification of neoplastic diseases of the
237		hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee
238		meeting-Airlie House, Virginia, November 1997. J Clin Oncol 1999;17:3835-49.
239	3.	Nisse C, Haguenoer JM, Grandbastien B, Preudhomme C, Fontaine B, Brillet JM
240		et al. Occupational and environmental risk factors of the myelodysplastic
241		syndromes in the North of France. Br J Haematol 2001;112:927-35.
242	4.	Rigolin GM, Cuneo A, Roberti MG, Bardi A, Bigoni R, Piva N, et al. Exposure to
243		myelotoxic agents and myelodysplasia: case-control study and correlation with
244		clinicobiological findings. Br J Haematol 1998;103:189-97.
245	5.	Ciccone G, Mirabelli D, Levis A, Gavarotti P, Rege-Cambrin G, Davico L et al.
246		Myeloid leukemias and myelodysplastic syndromes: chemical exposure,
247		histologic subtype and cytogenetics in a case-control study. Cancer Genet

248 Cytogenet 1993;68:135-9.

- 6. Kokouva M, Bitsolas N, Hadjigeorgiou GM, Rachiotis G, Papadoulis N and
- 250 Hadjichristodoulou C. Pesticide exposure and lymphohaematopoietic cancers: a
- 251 case-control study in an agricultural region (Larissa, Thessaly, Greece). BMC

252 Public Health 2011;11:5.

- 253 7. World Health Organization (WHO). Preventing disease through healthy
- 254 environments: exposure to benzene: a major public health concern.
- 255 2019;https://apps.who.int/iris/handle/10665/329481.
- 8. Strom SS, Oum R, Elhor Gbito KY, Garcia-Manero G and Yamamura Y. De
- 257 novo acute myeloid leukemia risk factors: a Texas case-control study. Cancer

258 **2012;118:4589-96**.

- 259 9. Teras LR, Diver WR, Deubler EL, Krewski D, Flowers CR, Switchenko JM et al.
- Residential ambient benzene exposure in the United States and subsequent risk
 of hematologic malignancies. Int J Cancer 2019;145:2647-2660.
- 10. Hayes RB, Yin SN, Dosemeci M, Li GL, Wacholder S, Travis LB et al. Benzene
 and the dose-related incidence of hematologic neoplasms in China. Chinese
- Academy of Preventive Medicine--National Cancer Institute Benzene Study
- 265 Group. J Natl Cancer Inst 1997; 89:1065-71.
- 11. Schnatter AR, Glass DC, Tang G, Irons RD and Rushton L. Myelodysplastic
- 267 syndrome and benzene exposure among petroleum workers: an international
 268 pooled analysis. J Natl Cancer Inst 2012;104:1724-37.
- 269 12. Poynter JN, Richardson M, Roesler M, Blair CK, Hirsch B, Nguyen P et al.
- 270 Chemical exposures and risk of acute myeloid leukemia and myelodysplastic
- syndromes in a population-based study. Int J Cancer 2017;140:23-33.
- 13. Mele A, Szklo M, Visani G, Stazi MA, Castelli G, Pasquini P et al. Hair dye use
- 273 and other risk factors for leukemia and pre-leukemia: a case-control study.
- Italian Leukemia Study Group. Am J Epidemiol 1994;139:609-19.

275	14.	Strom SS, Gu Y, Gruschkus SK, Pierce SA and Estey EH. Risk factors of
276		myelodysplastic syndromes: a case-control study. Leukemia 2005;19:1912-8.
277	15.	Wang P, Liu H, Jiang T and Yang J. Cigarette Smoking and the Risk of Adult
278		Myeloid Disease: A Meta-Analysis. PLoS One 2015;10:e0137300.
279	16.	Chang ET, Canchola AJ, Cockburn M, Lu Y, Wang SS, Bernstein L et al.
280		Adulthood residential ultraviolet radiation, sun sensitivity, dietary vitamin D, and
281		risk of lymphoid malignancies in the California Teachers Study. Blood
282		2011;118:1591-9
283	17.	Bertrand KA, Chang ET, Abel GA, Zhang SM, Spiegelman D, Qureshi AA et al.
284		Sunlight exposure, vitamin D, and risk of non-Hodgkin lymphoma in the Nurses'
285		Health Study. Cancer Causes Control 2011;22:1731-41.
286	18.	Wang SS, Luo J, Cozen W, Lu Y, Halley-Sullivan J, Voutsinas J et al. Sun
287		sensitivity, indoor tanning and B-cell non-Hodgkin lymphoma risk among
288		Caucasian women in Los Angeles County. Br J Haematol 2017;177:153-156.
289	19.	Zhang M, Song F, Hunter DJ, Qureshi AA and Han J. Tanning bed use is not
290		associated with internal cancer risk: evidence from a large cohort study. Cancer
291		Epidemiol Biomarkers Prev 2013;22:2425-9.
292	20.	Boffetta P, van der Hel O, Kricker A, Nieters A, de Sanjosé S, Maynadié M et al.
293		Exposure to ultraviolet radiation and risk of malignant lymphoma and multiple
294		myelomaa multicentre European case-control study. Int J Epidemiol
295		2008;37:1080-94.
296	21.	Zhang Y, Holford TR, Leaderer B, Boyle P, Zhu Y, Wang R et al. Ultraviolet
297		radiation exposure and risk of non-Hodgkin's lymphoma. Am J Epidemiol
298		2007;165:1255-64.
299	22.	Weihkopf T, Becker N, Nieters A, Mester B, Deeg E, Elsner G et al. Sun
300		exposure and malignant lymphoma: a population-based case-control study in
301		Germany. Int J Cancer 2007;120:2445-51.

302	23.	Hartge P, Lim U, Freedman DM, Colt JS, Cerhan JR, Cozen W et al. Ultraviolet
303		radiation, dietary vitamin D, and risk of non-Hodgkin lymphoma (United States).
304		Cancer Causes Control 2006;17:1045-52.
305	24.	Wang SS, Flowers CR, Kadin ME, Chang ET, Hughes AM, Ansell SM et al.
306		Medical history, lifestyle, family history, and occupational risk factors for
307		peripheral T-cell lymphomas: the InterLymph Non-Hodgkin Lymphoma Subtypes
308		Project. J Natl Cancer Inst Monogr 2014;2014:66-75.
309	25.	Zhang J, Ye X, Wu C, Fu H, Xu W and Hu P. Modeling Gene-Environment
310		Interaction for the Risk of Non-hodgkin Lymphoma. Front Oncol 2018;8:657.
311	26.	Ben-Eli H, Aframian DJ, Ben-Chetrit E, Mevorach D, Kleinstern G, Paltiel O et al.
312		Shared Medical and Environmental Risk Factors in Dry Eye Syndrome,
313		Sjogren's Syndrome, and B-Cell Non-Hodgkin Lymphoma: A Case-Control
314		Study. J Immunol Res 2019;2019:9060842
315	27.	Heavner K, Gross-Davis CA, Frank AL, Newschaffer C, Klotz J and Burstyn I.
316		Working environment and myeloproliferative neoplasm: A population-based
317		case-control study following a cluster investigation. Am J Ind Med 2015;58:595-
318		604.
319	28.	Benavente Y, Casabonne D, Costas L, Robles C, Alonso E, de la Banda E et al.
320		Established and suggested exposures on CLL/SLL etiology: Results from the
321		CLL-MCC-Spain study. Cancer Epidemiol 2018;52:106-111.
322	29.	Morton LM, Slager SL, Cerhan JR, Wang SS, Vajdic CM, Skibola CF, et al.
323		Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the
324		InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst
325		Monogr 2014;2014:130-44.
326	30.	Fan R, Zhang LY, Wang H, Yang B, Han T, Zhao XL et al. Multicentre hospital-
327		based case-control study of diffuse large B-cell lymphoma in Shanghai, China.
328		Asian Pac J Cancer Prev 2012;13:3329-34.

329	31.	Veierød MB, Smedby KE, Lund E, Adami HO and Weiderpass E. Pigmentary
330		characteristics, UV radiation exposure, and risk of non-Hodgkin lymphoma: a
331		prospective study among Scandinavian women. Cancer Epidemiol Biomarkers
332		Prev 2010;19:1569-76.
333	32.	Kelly JL, Friedberg JW, Calvi LM, van Wijngaarden E and Fisher SG. A case-
334		control study of ultraviolet radiation exposure, vitamin D, and lymphoma risk in
335		adults. Cancer Causes Control 2010;21:1265-75.
336	33.	Brown LM, Blair A, Gibson R, Everett GD, Cantor KP, Schuman LM, et al.
337		Pesticide exposures and other agricultural risk factors for leukemia among men
338		in Iowa and Minnesota. Cancer Res 1990;50:6585-91.
339	34.	Goldberg H, Lusk E, Moore J, Nowell PC and Besa EC. Survey of exposure to
340		genotoxic agents in primary myelodysplastic syndrome: correlation with
341		chromosome patterns and data on patients without hematological disease.
342		Cancer Res 1990;50:6876-81.
343	35.	Lv L, Lin G, Gao X, Wu C, Dai J, Yang Y et al. Case-control study of risk factors
344		of myelodysplastic syndromes according to World Health Organization
345		classification in a Chinese population. Am J Hematol 2011;86:163-9.
346	36.	West RR, Stafford DA, Farrow A and Jacobs A. Occupational and environmental
347		exposures and myelodysplasia: a case-control study. Leuk Res 1995;19:127-39.
348	37.	Costas L, Infante-Rivard C, Zock JP, Van Tongeren M, Boffetta P, Cusson A et
349		al. Occupational exposure to endocrine disruptors and lymphoma risk in a multi-
350		centric European study. Br J Cancer 2015;112:1251-6.
351	38.	Grandin L, Orsi L, Troussard X, Monnereau A, Berthou C, Fenaux P et al. UV
352		radiation exposure, skin type and lymphoid malignancies: results of a French
353		case-control study. Cancer Causes Control 2008;19:305-15.
354	39.	Pekmezovic T, Suvajdzic Vukovic N, Kisic D, Grgurevic A, Bogdanovic A, Gotic
355		M et al. A case-control study of myelodysplastic syndromes in Belgrade (Serbia

356	Montenegro). Ann Hematol 2006;85:514-9	9.
-----	--	----

- 40. Slager SL, Benavente Y, Blair A, Vermeulen R, Cerhan JR, Costantini AS et al.
- 358 Medical history, lifestyle, family history, and occupational risk factors for chronic
- 359 lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-
- 360 Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr 2014;2014:41-
- **51**.
- 362 41. Smedby KE, Hjalgrim H, Melbye M, Torrång A, Rostgaard K, Munksgaard L et
 363 al. Ultraviolet radiation exposure and risk of malignant lymphomas. J Natl
 364 Cancer Inst 2005;97:199-209.
- 365 42. Smedby KE, Sampson JN, Turner JJ, Slager SL, Maynadié M, Roman E et al.
- 366 Medical history, lifestyle, family history, and occupational risk factors for mantle
- 367 cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J
- 368 Natl Cancer Inst Monogr 2014;2014:76-86.
- 369 43. Stenehjem JS, Kjærheim K, Bråtveit M, Samuelsen SO, Barone-Adesi F,
- 370 Rothman N et al. Benzene exposure and risk of lymphohaematopoietic cancers
- in 25,000 offshore oil industry workers. Br J Cancer 2015;113:1641.
- Higgins JP, Thompson SG, Deeks JJ and Altman DG. Measuring inconsistency
 in meta-analyses. BMJ 2003;327:557-60.
- Begg CB and Mazumdar M. Operating characteristics of a rank correlation test
 for publication bias. Biometrics 1994;50:1088-101.
- 46. Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis
 detected by a simple, graphical test. BMJ 1997;315:629-34.
- 47. O'Sullivan DE, Hillier TWR, Brenner DR, Peters CE and King WD. Indoor
- tanning and the risk of developing non-cutaneous cancers: a systematic review
 and meta-analysis. Cancer Causes Control 2018;29:937-950.
- 381 48. Jin J, Yu M, Hu C, Ye L, Xie L, Chen F et al. Pesticide exposure as a risk factor
- 382 for myelodysplastic syndromes: a meta-analysis based on 1,942 cases and

383 5,359 controls. PLoS One 2014;9:e110850.

387 Table 1 – Main characteristics of studies evaluating the association between exposure and haematological disorders.

Study	Haematologic	Country	Condor	٨٩٥	Study dosign	Number of cases	Number of controls
Study	cell lineage	Country	Genuer	Age	Study design	Number of cases	Number of controls
Agriculture							
Benavente (2018) ³⁹	Lymphoid	Spain	M/F	>18	Case-Control	560	1845
Brown (1990) ¹⁷	Lymphoid	USA	М	>30	Case-Control	260	1245
Brown (1990) ¹⁷	Myeloid	USA	М	>30	Case-Control	257	1245
Brown (1990) ¹⁷	Not specified	USA	М	>30	Case-Control	578	1245
Ciccone (1993) ¹²	Myeloid	Italy	M/F	15-74	Case-Control	86	246
Costas (2015) ³⁵	Lymphoid	Europe	M/F	>18	Case-Control	2178	2457
Fan (2012) ³⁰	Lymphoid	China	M/F	>18	Case-Control	147	294
Goldberg (1990) ¹⁸	Myeloid	USA	-	28-88	Case-Control	52	52
Kokouva (2011) ¹³	Lymphoid	Greece	M/F	27-73	Case-Control	133	455
Kokouva (2011) ¹³	Myeloid	Greece	M/F	27-73	Case-Control	147	455
Kokouva (2011) ¹³	Not specified	Greece	M/F	27-73	Case-Control	428	455
LV (2011) ¹⁴	Myeloid	China	M/F	20-88	Case-Control	403	806
Mele (1994) ¹⁶	Lymphoid	Italy	M/F	>15	Case-Control	100	1161
Mele (1994) ¹⁶	Myeloid	Italy	M/F	>15	Case-Control	519	1161
Morton (2014) ³⁴	Lymphoid	Europe/North America/Australia	M/F	>18	Case-Control	17471	23096
Nisse (2001) ¹⁰	Myeloid	France	M/F	>18	Case-Control	204	204
Pekmezovic (2006) ⁸	Myeloid	Serbia Montenegro	M/F	18-85	Case-Control	80	160
Poynter (2017) ³⁸	Myeloid	USA	M/F	20-79	Case-Control	405	1348
Rigolin (1998) ¹¹	Myeloid	Italy	M/F	17-85	Case-Control	178	178

Slager (2014) ³¹	Lymphoid	Europe/North	M/F	>18	Case-Control	1595	11602
0.080. (202.)	_,p	America/Australia	,.	- 20			
Smedby (2014) ³³	Lymphoid	Europe/North	M/F	>18	Case-Control	331	9720
0000 ((202 .)	_)pc.d	America/Australia	,.	- 20			0.20
Strom (2005) ⁹	Myeloid	USA	M/F	24-89	Case-Control	354	452
Wang (2014) ³²	Lymphoid	Europe/North	M/F	>18	Case-Control	499	11490
	Lymphola	America/Australia	,.	- 10		155	11,50
West (1995) ¹⁵	Myeloid	UK	M/F	>18	Case-Control	400	400
Zhang (2019) ⁴¹	Lymphoid	China	M/F	>18	Case-Control	169	421
Chemical							
Costas (2015) ³⁵	Lymphoid	Europe	M/F	>18	Case-Control	2178	2457
Fan (2012) ³⁰	Lymphoid	China	M/F	>18	Case-Control	147	294
Hayes (1997) ²⁹	Lymphoid	China	M/F	>18	Cohort	90	1078
Hayes (1997) ²⁹	Myeloid	China	M/F	>18	Cohort	57	1078
Hayes (1997) ²⁹	Not specified	China	M/F	>18	Cohort	47	1078
Heavner (2015) ³⁷	Myeloid	USA	M/F	>42	Case-Control	54	472
Poynter (2017) ³⁸	Myeloid	USA	M/F	20-79	Case-Control	403	1344
Stenehjem (2015) ³⁶	Lymphoid	Norway	M/F	>18	Cohort	147	1661
Stenehjem (2015) ³⁶	Myeloid	Norway	M/F	>18	Cohort	31	1661
Stenehjem (2015) ³⁶	Not specified	Norway	M/F	>18	Cohort	112	1661
Zhang (2019) ⁴¹	Lymphoid	China	M/F	>18	Case-Control	169	421
Teras (2019) ⁹	Not specified	USA	M/F	>18	Cohort	2595	-
Indoor tanning							
Boffetta (2008) ²⁴	Lymphoid	Europe	M/F	>18	Case-Control	2028	2124
Grandin (2008) ²³	Lymphoid	France	M/F	>18	Case-Control	813	748

Hartge (2006) ²⁷	Lymphoid	USA	M/F	>18	Case-Control	551	462
Kelly (2010) ²¹	Lymphoid	USA	M/F	>18	Case-Control	140	139
Smedby (2005) ²⁸	Lymphoid	Sweden and Denmark	M/F	>18	Case-Control	3740	3178
Smedby (2005) ²⁸	Not specified	Sweden and Denmark	M/F	>18	Case-Control	3740	3178
Veierod (2010) ²²	Lymphoid	Norway	F	>18	Cohort	158	104953
Wang (2017) ¹⁹	Lymphoid	USA	F	20-79	Case-Control	1006	1038
Weihkopf (2007) ²⁶	Lymphoid	Germany	M/F	>18	Case-Control	710	710
Zhang (2007) ²⁵	Lymphoid	USA	F	>18	Cohort	601	717
Zhang (2013) ²⁰	Lymphoid	USA	F	>18	Cohort	4271	73358
Paint							
Mele (1994) ¹⁶	Lymphoid	Italy	M/F	>15	Case-Control	100	1161
Mele (1994) ¹⁶	Myeloid	Italy	M/F	>15	Case-Control	519	1161
Morton (2014) ³⁴	Lymphoid	Europe/North America/Australia	M/F	>18	Case-Control	17471	23096
Smedby (2014) ³³	Lymphoid	Europe/North America/Australia	M/F	>18	Case-Control	286	8150
Wang (2014) ³²	Lymphoid	Europe/North America/Australia	M/F	>18	Case-Control	454	9921
Zhang (2019) ⁴¹	Lymphoid	China	M/F	>18	Case-Control	169	421
Smoking							
Benavente (2018) ³⁹	Lymphoid	Spain	M/F	>18	Case-Control	560	1845
Ben-Eli (2019) ⁴²	Lymphoid	Spain	M/F	>18	Case-Control	280	211
Fan (2012) ³⁰	Lymphoid	China	M/F	>18	Case-Control	147	294
Mele (1994) ¹⁶	Lymphoid	Italy	M/F	>15	Case-Control	28	467
Mele (1994) ¹⁶	Myeloid	Italy	M/F	>15	Case-Control	249	467

		EARLY ACCESS VE	RSION				
Zhang (2019) ⁴¹	Lymphoid	China	M/F	>18	Case-Control	169	421
(-) Not referred.						5	
						*	
		4	1				
	5						

- Table 2 Stratified pooled odds ratios of the relationship between agriculture, chemical 389
- 390 and lifestyle exposures, and risk by cell-lineage type. The number of studies in each
- group is indicated. Note that some studies contribute with detailed information for more 391
- 392 than one subgroup.

	Exposure type/Cell- Lineage	No. studies	Effect size	CI low	CI high	I^2	P-value Cochran
	Agriculture	20	OR 1.48	1.26	1.74	85%	< 0.01
	Lymphoid	11	OR 1.38	1.11	1.72	91%	< 0.01
	Myeloid	12	OR 1.79	1.28	2.50	78%	< 0.01
	Haematological disorders		OR 1 33	0.82	2.15	75%	- 0.05
	not specified	2	OK 1.55	0.82	2.15	1370	- 0.05
	Chemical	8	OR 1.62	1.15	2.28	80%	< 0.01
	Lymphoid	5	OR 1.54	0.81	2.92	78%	< 0.01
	Myeloid	4	OR 2.15	1.63	2.85	0%	< 0.53
	Haematological disorders not specified	3	OR 1.40	0.90	2.16	61%	= 0.07
	Lifestyle exposures						
	Smoking	5	OR 1.14	0.82	1.59	80%	< 0.01
	Lymphoid	5	OR 0.97	0.78	1.20	48%	= 0.11
	Myeloid	1	OR 2.45	1.61	3.73	-	-
	Paint	5	OR 1.12	0.99	1.27	0%	= 0.61
	Lymphoid	5	OR 1.11	0.98	1.26	0%	= 0.51
	Myeloid	1	OR 1.38	0.61	3.11	-	-
	Indoor tanning	10	RR 1.01	0.80	1.27	0%	= 1.00
	Lymphoid	10	RR 1.00	0.78	1.28	0%	= 0.29
	Haematological disorders not specified	1	RR 1.09	0.61	1.95	-	-
393							

Figure 1- Study selection procedure. Of the 665 abstracts retrieved from the PubMed
searches, 595 were excluded. Most had no environmental risk factors or were focused
on secondary cancers and non-hematologic cancers. From the 70 full-text articles
considered, 35 works had no suitable data and only the remaining 35 were included in
the meta-analysis.

Study	TE seTE	Odds Ratio	OR	95%-CI	Weight	
cell_Lineage = Lymp	hoid	11				
Benavente (2018)	0.52 0.1086	1000	1.68	[1.36; 2.08]	5.5%	
Brown (1990)	-0.08 0.2966		0.92	[0.51; 1.65]	3.4%	
Costas (2015)	-0.05 0.0657	10 I.	0.96	[0.84; 1.09]	5.9%	
Fan (2012)	0.67 0.1943		1.95	[1.33; 2.86]	4.5%	
Kokouva (2011)	0.31 0.2799	- 10	1.36	[0.79; 2.36]	3.6%	
Mele (1994)	-0.12 0.4599		0.88	[0.36; 2.18]	2.1%	
Morton (2014)	0.24 0.0521		1.28	[1.15; 1.41]	5.9%	
Slager (2014)	0.55 0.0536		1.73	[1.55; 1.92]	5.9%	-
Smedby (2014)	0.13 0.1163	the second se	1.14	[0.91; 1.43]	5.4%	
Wang (2014)	-0.41 0.2037		0.66	[0.44; 0.99]	4.4%	
Zhang (2019)	1.48 0.1982		4.39	[2.98; 6.48]	4.5%	
Random effects mod	lel	\$	1.38	[1.11; 1.72]	51.1%	
Heterogeneity: $J^2 = 91\%$, τ ² = 0.1056, ρ < 0.01					
cell_Lineage = Myelo	id					
Brown (1990)	-0.10 0.1976		0.90	[0.61; 1.33]	4.5%	
Ciccone (1993)	0.96 0.6486		2.62	[0.73; 9.33]	1.3%	
Goldberg (1990)	0.65 0.4373		1.92	[0.81; 4.52]	2.2%	
Kokouva (2011)	0.34 0.2665		1.41	[0.84; 2.38]	3.7%	
Lv (2011)	0.69 0.2723		2.00	[1.17; 3.41]	3.6%	
Mele (1994)	0.50 0.2718	- 100	1.64	[0.97; 2.80]	3.6%	
Nisse (2001)	0.92 0.4337		2.52	[1.08; 5.89]	2.2%	
Pekmezovic (2006)	1.99 0.4648		- 7.29	[2.93; 18.12]	2.1%	
Poynter (2017)	-0.13 0.1396		0.88	[0.67; 1.15]	5.2%	
Rigolin (1998)	0.73 0.2687	- 12	2.06	[1.22; 3.50]	3.7%	
Storm (2005)	1.62 0.3831		5.06	[2.39; 10.72]	2.6%	
West (1995)	0.04 0.1941		1.04	[0.71; 1.52]	4.5%	
Random effects mod	lel	\diamond	1.79	[1.28; 2.50]	39.2%	
Heterogeneity: 1* = 78%,	, τ ^e = 0.2468, <i>p</i> < 0.01					
cell_Lineage = hema	tological disorders n	ot specified				
Brown (1990)	0.08 0.1018	in the second se	1.08	[0.88; 1.32]	5.6%	
Kokouva (2011)	0.57 0.2260		1.77	[1.14; 2.76]	4.2%	
Random effects mod	el	\Leftrightarrow	1.33	[0.82; 2.15]	9.7%	
Heterogeneity: $I^2 = 75\%$	$\tau^2 = 0.0923, p = 0.05$					
Random effects mod	el	\$	1.48	[1.26; 1.74]	100.0%	
Heterogeneity: 12 = 85%	$\tau^2 = 0.1099, p < 0.01$					
Residual heterogeneity:	$l^2 = 87\%, p < 0.01 0.1$	0.5 1 2 1	0			

⁴⁰⁵ Figure 2 - A forest plot illustrating risk estimates from studies included in the analysis of

407

404

⁴⁰⁶ agriculture exposure and the risk of development of lymphoid/myeloid malignancies.

Study	TE seTE	Odds Ratio	OR	95%-CI	Weight
cell_Lineage = Lymp	phoid				
Costas (2015)	-0.20 0.0882		0.82	[0.69; 0.98]	12.7%
Fan (2012)	-0.17 0.3266		0.84	[0.44; 1.60]	9.0%
Hayes (1997)	1.08 0.4172		2.93	[1.29; 6.64]	7.5%
Stenehjem (2015)	0.58 0.4611		1.79	[0.72; 4.42]	6.8%
Zhang (2019)	1.98 0.8004		- 7.23	[1.51; 34.69]	3.5%
Random effects more	del	0	1.54	[0.81; 2.92]	39.5%
Heterogeneity: /2 = 78%	$_{0}, \tau^{2} = 0.3643, p < 0.01$				
cell_Lineage = Myel	bid				
Hayes (1997)	1.28 0.4709	- <u>-</u>	3.61	[1.43; 9.08]	6.7%
Heavner (2015)	0.32 0.5574		1.37	[0.46; 4.09]	5.6%
Poynter (2017)	0.77 0.1618	1000	2.16	[1.57; 2.97]	11.8%
Stenehjem (2015)	0.44 0.5587		1.55	[0.52; 4.64]	5.6%
Random effects more	del	•	2.15	[1.63; 2.85]	29.7%
Heterogeneity: $I^2 = 0\%$,	$\tau^2 = 0, p = 0.53$				
cell_Lineage = hema	tological disorders n	not specified			
Hayes (1997)	0.93 0.3761		2.53	[1.21; 5.29]	8.1%
Stenehjem (2015)	0.34 0.2219		1.41	[0.91; 2.17]	10.8%
Teras (2019)	0.03 0.1647		1.03	[0.75; 1.42]	11.8%
Random effects mod	del		1.40	[0.90; 2.16]	30.8%
Heterogeneity: /2 = 61%	$\sigma_{\rm c} \tau^2 = 0.0888, \rho = 0.07$				
Random effects mo	del	-	1.62	[1.15; 2.28]	100.0%
Heterogeneity: 12 = 80%	t_{p} , $\tau^{2} = 0.2289$, $p < 0.01$	1 1 1 1			
Residual heterogeneity:	$I^2 = 65\%, p < 0.01$	0.1 0.5 1 2 10			

410 Figure 3 - A forest plot illustrating risk estimates from studies included in the analysis of

411 chemical exposure and the risk of development of lymphoid/myeloid malignancies.