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Introduction

Pretermbirth (PTB), defined by theWorldHealthOrganization as birth occurring before 37 completed
gestationalweeks (g.w.) [1], is the leading cause of neonatal deaths [2]. It is also themajor cause of death in
childrenunder 5years-of-age, corresponding to ca. 1milliondeaths in2015 [3]. InPortugal, ca. 8.0%of all
neonates were born prematurely in 2018, and 0.2% died before 28 days of life [4]. Depending on gesta-
tional age, PTB is divided into sub-categories, with different prognosis: extremely preterm (E-PTB,
<28 g.w.), very preterm (V-PTB, 28-31 g.w.), moderate preterm (M-PTB, 32-33g.w.) and late preterm (L-
PTB, 34-36 g.w.) [1]. Metabolomics, defined as the qualitative and quantitative analysis of metabolites
present inabiological system[5], hasbeenused to studyPTBatpre- andpost-natal levels [6,7]with theaim
of identifying predictivemarkers and assessingPTBbabies health status, respectively.

In this work, NuclearMagnetic Resonance (NMR) spectroscopywas used to analyze the urine of PTB
newborns and the resulting spectrawere handled in order to: a) differentiate distinct PTBstages in termsof
metabolic behaviour; and b) establish a urinary metabolic trajectory of PTB newborns until theoretical
term-time,while searching formarkers of organmaturity.

Methods

Samples and sample analysis:Urinewas collected at theMaternityBissayaBarreto,UniversityHos-
pital Center of Coimbra, under the following ethical approvals (18/04, 29/09 and 0159/CES), for PTB
babies: E-PTB (n=2), V-PTB (n=9), M-PTB (n=5), L-PTB (n=28) and healthy newborns (hNB, n=46).
Informed parental consent was obtained for each infant and clinical information was obtained from
neonatalmedical records.Additionally, 18PTBnewbornswere followedduring probation in theNeonatal
Intensive Care Unit (NICU) and urine samples were collected longitudinally. Sample collection proced-
ures, preparation and NMR spectral acquisition conditions have been described elsewhere [8].
Unidimensional ¹H NMR spectrum was acquired for each sample and, for selected samples, 2D spectra
were acquired to aid peak assignment.
Data analysis:NMRspectrawere transformed into amatrix of n rows (samples) andm columns (data

points). Prior to multivariate analysis (MVA), the water, urea and ethanol peaks were removed and the
spectrawere aligned [9] andnormalized to total area.Unsupervised and supervisedmethods, namelyPrin-
cipal ComponentAnalysis (PCA) and Partial Least-DiscriminantAnalysis (PLS-DA), respectively, were
performed (SIMCA-P11.5). Peakswere integrated (Amix3.9.5) andcomparisonbetweengroupswasper-
formed through effect size determination [10] and p-values (Wilcoxon test). In order to assess the
predictive power of PLS-DAmodels, Monte Carlo Cross Validation was performed, with recovery of Q²
values and confusionmatrices.

Results and discussion

Typical newborn urine proton NMR spectra comprise information on several metabolites (Figure 1).
1D/2DNMR enabled the identification of ca. 60 compounds, including amino acids and derivatives, sug-
ars, organic acids and other compounds.
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Tocompare themetabolic profileof newbornurinebetweendifferent sub-categories andhNBsat birth,
a cross-sectional study was performed. Complementary selected pairwise comparisons were performed
(VE-PTB (very and extreme) vsML-PTB (moderate to late) and each one vs hNB. The PLS-DAquality
parameters obtained (Table 1) revealed robust models only when extreme groups were compared (see Q²
values > 0.5).

This was confirmed by the PLS-DA scores plot comparing VE-PTBs and hNBs (Figure 2), which
showed one of the highestQ² values.These results indicate that changes during probation occur gradually,
so that statistically relevant differences are only notedwhenmore extreme stages are compared.

Figure 2 - Pairwise PLS-DA scores plot between extremely + very preterm newborns (n=11) and controls (n=46). CR,
classification rate; hNBs, healthy newborns; Q², predictive power; Sens., % sensitivity; Spec., % specificity; VE-PTB

Table 1 - PLS-DA quality parameters for pairwise models obtained with two different scalings (centered and unit
variance). N/A, not applicable: this model was not performed due to low sample numbers; CR, classification rate;
Q², predictive power (values in bold indicate robust models); sens, % sensitivity; spec., %specificity; UV, unit
variance.

Scaling CR sens. spec. Q² median
step by step evaluation
V (n=9) vs E (n=2) centered N/A N/A N/A N/A

UV N/A N/A N/A N/A
M (n=5) vs V (n=9) centered 69 37 87 -0.16

UV 69 37 87 -0.16
L (n=28) vs M (n=5) centered 84 92 41 0.086

UV 88 93 63 0.15
hNB (n=46) vs L (n=28) centered 83 92 68 0.45

UV 82 94 64 0.44

selected models
ML (n=33) vs VE (n=11) centered 69 8 89 -0.039

UV 67 19 82 -0.0042
ML (n=33) vs hNB (n=46) centered 52 32 65 -0.15

UV 84 67 97 0.54
VE (n=11) vs hNB (n=46) centered 96 89 98 0.76

UV 94 78 97 0.84
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Figure 1 - Average 1H NMR spectrum of urine of healthy newborns. Legend: 1, lactate; 2, threonine; 3, alanine; 4,
adipate; 5, acetate; 6, N-acetylneuraminic acid; 7, acetone; 8, succinate; 9, citrate; 10, dimethylamine; 11,
methylguanidine; 12, dimethylglycine; 13, creatine; 14, creatinine; 15, ethanolamine; 16, betaine; 17, taurine; 18,
glycine; 19, hippurate; 20, glucose; 21, lactose; 22, sucrose; 23, fumarate; 24, N-methyl-2-pyridone-5-carboxamide;
25, 4-hydroxyphenylacetate; 26, tyrosine; 27, 4-hydroxy-hippurate; 28, 1-methylhistidine; 29, histidine; 30,
phenylacetylglutamine; 31, N-methylnicotinamide; 32, formate.
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Metaboliteswhich vary significantly between groups included amino acids (creatine, histidine, lysine,
taurine and tyrosine), organic acids (3-aminoisobutyrate, 4-deoxythreonic acid, 4-hydroxyphenylacetate,
4-hydroxyhippurate, acetoacetate, adipate, cis-aconitate, citrate, formate, lactate, malonate, N-acetyl-
neuraminic acid, pyruvate and succinate), sugars (galactose, glucose), other compounds (1-
methylhistidine, N-methyl-2-pyridone-5-carboxamide, acetone, allantoin, carnitine, dimethylamine,
dimethylglycine, hypoxanthine, methylguanidine, m-inositol, N-methylnicotinamide, phenylacetyl-
glutamine, trigonelline and xanthine) and 11 still unknown signals.

Some of the above metabolites were selected for follow-up of the longitudinal cohort. In fact, some
metabolites never reached healthy levels, even at theoretical term time (creatine,3-aminoisobutyrate,
malonate, creatinine, ethanolamine,methylguanidine and taurine),whereas others, probablymore-organ-
maturity-dependent, (e.g. glucose, N-methylnicotinamide, lysine, carnitine, 4-hydroxyphenylacetate,
succinate, xanthine, pyruvate, dimethylamine, 4-hydroxyhippurate, cis-aconitate, N-acetylneuraminic
acid, 1-methylhistidine,N-methyl-2-pyridone-5-carboxamide) attained healthy levels.On the other hand,
histidine was always at healthy levels. Other variations were found for tyrosine, 4-deoxythreonic acid,
acetate, adipate, formate, lactate, acetone, allantoin, dimethylglycine, galactose, hypoxanthine, m-inos-
itol, phenylacetylglutamine and trigonelline. This analysis may enable the follow-up of the specific
development processes of the newborn lungs, liver, kidney and gutmicroflora during probation.

Conclusions:

Multivariate statistical analysis is useful for differentiating PTB subcategories and healthy newborns
and identifying important varying metabolites, potentially enabling metabolic markers of organ maturity
and immaturity to be advanced.
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