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1 Introduction

Data scientist is the new fashion and a statistician is out of fashion. A
data scientist focus on data clean, data transformation, exploratory analy-
sis, choosing prediction algorithms and the respective predictions quality. A
statistician focus on the selection of the sample, p-values, confidences inter-
vals and the assumptions of the models to do inference [Gutierrez, 2019].

Independently of this di↵erences the only important matter is to make
good science. Data scientist wants to give good predictions, usually means
that there is a strong correlation/association. In the case of a statistician
good inference usually means study the association/correlation between vari-
ables. However, in both cases ”correlation does not equal causation”.

For example, there is a correlation between Countries’ Annual Per Capita
Chocolate Consumption and the Number of Nobel prizes per 10 Million Pop-
ulation. This means that eating chocolate causes winning Nobel prizes or
means that there is a common cause to both things, e.g., being a rich coun-
try causes at same time eating more chocolate and winning Nobel prizes
[Maurage et al., 2013].

The focus on health and in particular on epidemiology is causation and
not if there is good predictions or strong associations. We can have excellent
predictions with none of the relations between the variables being causal.
Thus, data scientist/statistician should not focus only in the prediction or
in the model but if there is causation. A researcher should know how to to
formalize and communicate causal questions and assumptions? The main
tool to do that is causal diagrams, direct acyclic graphs (DAGs). DAGs
are considered a useful tool for causal inference. Helpful for identifying which
variables to control and to make assumptions explicit. This paper is divides
in seven sections: introduction, causal diagrams language, probability link,
association and causation, blocking paths, rules for d-separation and discus-
sion.

2 Causal Diagrams Language

Graphs can be used to formalize causal inference [Spirtes et al., 2000]. This
is a direct graph, which shows that X a↵ects Y .

X Y
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This is a undirect graph, which shows that X and Y are associated
with each other.

X Y

A DAG can not have undirect paths and no cycles.

1. Paths are sequence of lines (edges) between two variables, regardless of
the direction of arrows; A path is way to get from one vertex to another,
travelling along edges (regardless of the direction of the edges); In figure
1 there are two paths from W to B, W > Z > B and W > Z > A > B

and there is one path from Z to W (Z < W ).

W Z B

A

Figure 1: Example 1 of a causal graph

2. Descendants are the direct or indirect e↵ects of a variable; In figure
1 Z is a descendant of W, W is Z parent, , W is ancestor of B or B has
two parents (but we can have more than two). Consequently a family
tree is a DAG!

3. Colliders Common e↵ect of two variables in a path: where the arrows
’collide’. Any variable on a path that is not a collider is a ”non-collider”.
In figure 1, B is a collider because is common e↵ect of Z and A.

In a DAG, all common causes of two or more variables in the diagram have
to be explicit, regardless of whether or not they are observed. The diagram
should be parsimonious - causes of only one of the node (variables) should not
be included. Unknown or unmeasured causes can and should be represented.
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3 Probability

Where is the probability in DAGs? DAGs encodes assumptions about de-
pendencies between variables. A DAG will tell us: which variables are inde-
pendent from each other, which variables are conditionally independent from
each other, ways that we can factor and simplify the joint distribution.
For a given graph and vertex W let Parents(W) be a set of parents of W,
and Descendants(W) be a set of descendants of W.

Markov Condition: A direct acyclic graph G over V and a probability
distribution P (V ) satisfy the Markov condition if and only if for every W

in V, W is independent of V \ {Descendants(W) [ Parents(W)} given
Parents(W).

D

A B C

Figure 2: Example 2 of a causal graph

The DAG of figure 2 implies that:

1. P (C | A,B,D) = P (C);

2. P (B | A,C,D) = P (B | A);

3. P (B | D) 6= P (B);

4. P (D | A,C,D) = P (D | A).

We can decompose the joint distribution by sequential conditioning only
on sets of parents. Start with roots (nodes with no parents). Proceed down
the descendant line, always conditioning on parents. Thus for the DAG of
figure 2 implies that:

P (A,B,C,D) = P (C)P (D)P (A | D)P (B | A) (1)
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4 Association and causation

In which circumstances X and Y are statistically associated? All this DAGs
implies association between X and Y.

X Y

(a) Direct e↵ect graph

C X Y

(b) Common e↵ect graph

Ee Eo

E
⇤

O
⇤

E O

(c) Measurement error graph

Ee Eo

E
⇤

O
⇤

E O

(d) Measurement error graph

Figure 3: Four simple graphs

For graph 3a, X is parent so according to the Markov Condition they
are not independent. Also graph 3b is not independent because according
to the Markov Condition only Y ?? X | C. We call backdoor path from
treatment X to outcome Y if there are paths between X to Y trough arrows
into X. Here, X  C ! Y is backdoor path from X to Y. Backdoor path
confounded the relationship between X and Y, so this is not a causal e↵ect.
The path X  C ! Y is an unblocked path between X and Y - unless
we condition on C (e.g. restrict, adjust, stratify). An observed statistical
association between X and Y can be due to being a cause of Y or C being a
common cause of X and Y.

Another not causal association is an association due to measurement error
[Hernán and Cole, 2009] showed in graphs 3c and 3d. The true exposure (E)
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a↵ects both the outcome (O) and the measured exposure (E*). The causal
diagram also includes the node Ee to represent all factors other than E that
determine the value of E⇤ and similar case between Eo and O

⇤. We refer to
Ee and Eo as the measurement error for E and O. The assumption implicit
in many epidemiology studies is that the association between E

⇤ and O
⇤

approximates the association between E and O. However this is only true
if E is not associated with measurement error of O (graph 3c) and the O

is associated with measurement error of E (graph 3d). A previous study
wanted to study the causal association between knee osteoarthritis (E) with
knee Pain (O) [Pereira et al., 2017]. Both measures su↵er from measurement
error. Two medical doctors looking to the same x-ray can give di↵erent
results in relation to the presence or not of osteoarthritis or two patients
with the same pain level can given di↵erent scores in a pain questionnaire.
The association found between E

⇤ and O
⇤ may not be causal because if a

patient already know that has knee Osteoarthritis may recall and graded
more pain (graph 3c). If a medical doctor already know that the patient has
knee pain will more falsely detect the presence of knee osteoarthritis (graph
3d). Therefore is possible to have an association that is not really causal.

5 Blocking paths

Paths can be blocked by conditioning on variables (vertices) in the path.
Consider the the following path:

E M O

Figure 4: Example of path with a mediator

If we condition on the mediator, M, (a node in the middle of chain),
we block the path from E to O. Within each strata of M there is no asso-
ciation between E and O. E.g., a previous cohort study aimed to assess if
maternal socio-economic position at 12 years of age (E) influences Child di-
etary patterns at 4 years of age (O) via-socio and demographic characteristics
at child’s delivery (M). The study found that E was positive associated with
the O, higher socio-economic position at 12 years was associated with health-
ier dietary patten, however when maternal socio-economic and demographic
characteristics at child’s delivery (M) were added to the model, maternal
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socio-economic position at 12 years ceased to be associated with children’s
dietary pattern [Durão et al., 2017].

Consider the following path:

C

EO

Figure 5: Example of path with a confounder

If we condition on confounder (C), the path from exposition (E) to the
outcome (O) is blocked. E.g., a previous cohort study founded a crude associ-
ation between occupational physical activity (E) and hypertension incidence
(O), however after adjusting for age (C) the e↵ect disappear. This showed
that the crude association is not causal but due to age being a common cause
of occupational physical activity and hypertension incidence [Camões et al.,
2010].

Consider the following path:

E

C

O

Figure 6: Example of path with a collider

If a collider is conditioned on, the opposite situation occurs comparing
to the confounder example. In this path, E and O are not associated via this
path. However, conditioning on C induces an association between E and O.
Opens a door between E and O. This is call selection bias.
For example, a study had tried to explained the relationship between body
mass index (BMI), depression and discrepancy between perceived and desired
body image (�BI). [Almeida et al., 2012]. The study showed that there is
no crude association between depression (E) and BMI (O), however BMI and
depression has a positive association with discrepancy (C) between perceived
and desired body image. The DAG is represented in figure 7a. If we ad-
just/conditional for discrepancy between perceived and desired body image
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there will be a negative association between BMI and Depression. The DAG
is represented in figure 7b. Why this? Among those individuals with high
discrepancy, they have high probability of having BMI or high probability of
depression (or both). Put it in another way, restricting our attention only to
those individuals with high discrepancy or conditioning by (stratifying by)
the variable discrepancy, we have conditioned on a ’common e↵ect’ of both
BMI and Depression. Therefore, knowing that you have a high discrepancy,
if we measure that you have low BMI, then we know that your high dis-
crepancy is due to having depression; inversely, if we measure that you have
no depression, then we know that your high discrepancy is due to high BMI.
Conversely, all individuals with low discrepancy were exposed to neither high
BMI nor high depression or at least one need to be very low to compensate
a average value of the other.

BMI

�BI

Depression

(a) DAG for BMI, �BI and de-
pression

BMI

�BI

Depression

(b) DAG for BMI and depres-
sion, after conditionally on �BI

Figure 7: DAG for BMI and depression and �BI

6 Rules for d-separation

The d-separation rules will allow the identification of the set of variables that
is need to adjust to evaluate the direct e↵ect of variable on another variable.
A path is d-separated by the set of variables C if:

1. It contains a chain D ! E ! F and the middle part is in C;

2. It contains a fork D  E ! F and the middle part is in C;

3. It contains an inverted fork (D ! E  F ) and the middle part is not
in C, nor any descendants of it.
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The d-separation rules can be applied to define the adjustment in statisti-
cal model to identify causality (Criterion 1). However there are other criteria
to define the adjustment in a statistical model. The usual criterion for adjust-
ment for statistical modelling is adjusting for all variables (Criterion 2).
Another criterion is the disjunctive cause criterion [VanderWeele and Sh-
pitser, 2011] (Criterion 3) that adjusts for all observed variables that causes
the exposure, outcome or both.

Considering the following four DAGs.

V

M

W

A Y

(a) DAG 1

V

M

W

A Y

(b) DAG 2

U1

M

U2

A Y

(c) DAG 3

U1

M

U2

A Y

(d) DAG 4

Figure 8: Measurement error bias DAGs

Imagine that in the DAGs of figure 8 the researcher wants to assess the
direct e↵ect (causal) between A and Y , the variables V, W and M are ob-
served variables and U1 and U2 are unobserved variable. Applying criterion
1 to DAG 1 of figure 8a we need to adjust for V or W or both, because the
middle part of a fork should be in the adjustment; for DAG 2 and 3 of figures
8b and 8c we don’t need to adjust for any variable because it contains an
inverted fork and the middle part should not be in the adjustment. In DAG 4
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of figure 8d we have two problems: from one side we have to adjust for {M}
because we have a fork A < U1 > M > Y ; however, from the other side, the
variable M is part of inverted fork so we should not adjust. In conclusion,
in DAG 4 we can’t obtain an unbiased association because by one-side the
association is confounded and from the other side su↵ers from selection bias.
To apply criterion 2 to DAG 1 and 2 of figures 8a and 8b we need to adjust
for {V,W,M} and this would be fine. In DAG 2 this adjustment would open
a path between V and W by adjusting for M , however, by adjusting for the
other variables this open path would be block. In DAG 3 and DAG 4 of
figures 8c and 8d we would only adjust for M because the other variables
{U1, U2} are unobserved. This would open a path between U1 and U2, and
consequently this would mean that the association between A and Y would
be confounded because we couldn’t block. Applying criterion 3 we would
adjust for {V,W} on DAG 1 and 2, on DAG 3 we would not adjust for any
variable and for DAG 4 we would be adjusting for {M}. In the first three
DAGs the adjustment set would be correct however in DAG 4 this would be
incorrect because there would be an open path between U1 and U2.
The dagitty package from R can identify all this sets of adjustments as showed
in following example [Textor et al., 2016].

> library(dagitty)
> #DAG 1
> g <- dagitty("dag{ v->{w m a} {a w}->y
+ a[exposure]
+ y[outcome]
+ }") # m-bias graph
> adjustmentSets(g)

{ w }
{ v }

> #DAG 2
> g <- dagitty("dag{ v->{m a} w->m {a w}->y
+ a[exposure]
+ y[outcome]
+ }") # m-bias graph
> adjustmentSets(g)

{}

> #DAG 3
> g <- dagitty("dag{ u1->{m a} u2->m {a u2}->y
+ a[exposure]
+ y[outcome]
+ u1[unobserved]
+ u2[unobserved]
+ }") # m-bias graph
> adjustmentSets(g)
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{}

> #DAG 4
> g <- dagitty("dag{ u1->{m a} u2->m {a m u2}->y
+ a[exposure]
+ y[outcome]
+ u1[unobserved]
+ u2[unobserved]
+ }") # m-bias graph
> adjustmentSets(g)
> #none was founded

To explained more clear all this aspects we simulated DAG 2, 3 and 4
and adjust using linear regression model in R. As observed in this simulation
when adjust for the correct set of variables a valid association is found if not
adjust for the correct set of variables a bias association is found.

> set.seed(100)
> V<-U1<-rnorm(10000)
> W<-U2<-rnorm(10000)
> A<-2*U1+rnorm(10000)
> M<-3*U1+2*U2+rnorm(10000)
> Y<-A+U2+rnorm(10000)
> summary(lm(Y~A)) #DAG 2 criterion 1

Call:
lm(formula = Y ~ A)

Residuals:
Min 1Q Median 3Q Max

-5.4210 -0.9436 0.0051 0.9638 5.5306

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.001088 0.014199 0.077 0.939
A 0.995497 0.006372 156.233 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.42 on 9998 degrees of freedom
Multiple R-squared: 0.7094, Adjusted R-squared: 0.7094
F-statistic: 2.441e+04 on 1 and 9998 DF, p-value: < 2.2e-16

> summary(lm(Y~A+M+V+W)) #DAG 2 criterion 2

Call:
lm(formula = Y ~ A + M + V + W)

Residuals:
Min 1Q Median 3Q Max

-3.4344 -0.6766 -0.0142 0.6783 3.6164

Coefficients:
Estimate Std. Error t value Pr(>|t|)
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(Intercept) 0.012971 0.010002 1.297 0.195
A 0.985226 0.009921 99.308 <2e-16 ***
M 0.001659 0.010077 0.165 0.869
V 0.024589 0.037668 0.653 0.514
W 1.005315 0.022565 44.553 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1 on 9995 degrees of freedom
Multiple R-squared: 0.8559, Adjusted R-squared: 0.8558
F-statistic: 1.484e+04 on 4 and 9995 DF, p-value: < 2.2e-16

> summary(lm(Y~A+V+W)) #DAG 2 criteion 3

Call:
lm(formula = Y ~ A + V + W)

Residuals:
Min 1Q Median 3Q Max

-3.4350 -0.6767 -0.0142 0.6792 3.6170

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01297 0.01000 1.296 0.195
A 0.98522 0.00992 99.313 <2e-16 ***
V 0.02960 0.02223 1.332 0.183
W 1.00864 0.01001 100.793 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1 on 9996 degrees of freedom
Multiple R-squared: 0.8559, Adjusted R-squared: 0.8559
F-statistic: 1.979e+04 on 3 and 9996 DF, p-value: < 2.2e-16

> summary(lm(Y~A)) #DAG 3 applying criterion 1 and 3

Call:
lm(formula = Y ~ A)

Residuals:
Min 1Q Median 3Q Max

-5.4210 -0.9436 0.0051 0.9638 5.5306

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.001088 0.014199 0.077 0.939
A 0.995497 0.006372 156.233 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.42 on 9998 degrees of freedom
Multiple R-squared: 0.7094, Adjusted R-squared: 0.7094
F-statistic: 2.441e+04 on 1 and 9998 DF, p-value: < 2.2e-16

> summary(lm(Y~A+M)) #DAG 3 applying criterion 2
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Call:
lm(formula = Y ~ A + M)

Residuals:
Min 1Q Median 3Q Max

-4.4482 -0.7924 0.0017 0.8015 4.3060

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.007383 0.011869 0.622 0.534
A 0.639115 0.007603 84.061 <2e-16 ***
M 0.297997 0.004537 65.681 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.187 on 9997 degrees of freedom
Multiple R-squared: 0.797, Adjusted R-squared: 0.797
F-statistic: 1.963e+04 on 2 and 9997 DF, p-value: < 2.2e-16

> Y<-A+U2+M+rnorm(10000)
> summary(lm(Y~A)) #DAG 4 without adjusting

Call:
lm(formula = Y ~ A)

Residuals:
Min 1Q Median 3Q Max

-13.8845 -2.3743 -0.0744 2.4193 13.7696

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.03799 0.03589 -1.059 0.29
A 2.19113 0.01610 136.058 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 3.589 on 9998 degrees of freedom
Multiple R-squared: 0.6493, Adjusted R-squared: 0.6493
F-statistic: 1.851e+04 on 1 and 9998 DF, p-value: < 2.2e-16

> summary(lm(Y~A+M)) #DAG 4 applying criterion 2 and 3

Call:
lm(formula = Y ~ A + M)

Residuals:
Min 1Q Median 3Q Max

-4.3380 -0.7990 0.0110 0.7986 5.0323

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.010652 0.011908 -0.894 0.371
A 0.643507 0.007628 84.359 <2e-16 ***
M 1.294077 0.004552 284.285 <2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

12

ARTICLE IN PRESS 31-1-2020



Residual standard error: 1.191 on 9997 degrees of freedom
Multiple R-squared: 0.9614, Adjusted R-squared: 0.9614
F-statistic: 1.245e+05 on 2 and 9997 DF, p-value: < 2.2e-16

7 Discussion

This paper showed several ways that two variables can be associated with-
out one being the cause of the other. The explanations can be: they share
common causes, confounding, they share e↵ects that have conditioned on,
selection bias, or there is a di↵erential measurement error that will induce a
relationship between two variables that was not causal. One important point
is that even that the association is causal this can be explain by reverse
causation. It is not variable X that causes Y is Y that causes X.
Nevertheless, it is possible to identify causation. The more e�cient way to
identity causation is making a random trial, this will guarantee that there is
no common causes between exposure and outcome because the exposure is
randomly assign. By applying d-separation rules on observational studies we
can guarantee causation. To do so we need to have enough measure variables
that allows to block all backdoor paths for the measured and unmeasured
confounding variables. For this last step to work well we need to represent
all previous knowledge and assumptions using a DAG. The DAG will allow to
understand the extent to which observed data are consistent with the causal
model proposed by the researcher, to predict expected statistical associations
and detect logical problems and contradictions in data analysis as we have
shown.
A very usual library from R is ’dagitty’ that helps to identify the adjustments
we should do or if we can’t find adjustment [Textor et al., 2016]. In conclu-
sion, to claim causation a biostatistics needs to accompany all the knowledge
on statistics and modelling with good theoretical/practical background on
epidemiology and in more specific use tools like a DAG.
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