Architecture for orchestration of M2M services

Gustavo Pires, Mdario Antunes, Daniel Corujo, Diogo Gomes, Jodo Paulo Barraca, Rui Aguiar

Instituto de Telecomunica¢des, Universidade de Aveiro, Aveiro, Portugal
{gmpp, mario.antunes, dcorujo, dgomes, jpbarraca}@av.it.pt, ruilaa@det.ua.pt

Abstract—The past few years, miniaturization has allowed us
to imbue computers into everyday devices. This in turn has
enabled these devices to communicate with each other, and in
doing so, allows us to collect a wealth of information, more
accurately and with greater availability than ever before. This
phenomenon is known as the Internet of Things. It allows smart
environments to truly behave in an intelligent manner by using
information collected from the devices mentioned above. How-
ever, it’s necessary to model how the gathered data will influence
the behavior of a smart environment. This open problem can be
approached as a machine to machine (M2M) orchestration.

In this paper we present a new architecture for M2M
orchestration. This new architecture will be based around a
platform that creates orchestration processes through a graphical
interface. Through this interface a business process execution
language (BPEL) service will be made and deployed on an enter-
prise service bus (ESB). Alongside this, we are also developing
a collection of services that will be used for the purposes of
implementing a smart environment.

Index Terms—Orchestration, Machine to Machine, Smart
Environments

I. INTRODUCTION

In the past few years, we have seen a massive increase
in the number of smart devices. In fact, according to the
ICT KTN [1], the number of these devices is expected to
increase worldwide from 4.5 billion in 2011 to 50 billion
by 2020. These devices are able to communicate with each
other, sending relevant information about their environment
and coordinating their actions. This trend is known as the
Internet of Things (IoT).

These connected devices can be seen as an unused source
of context information. In this work we will consider context
as defined by Abowd and Dey [2],

Context is any information that can be used to

characterize the situation of an entity. An entity is

a person, place, or object that is considered relevant

to the interaction between a user and an application,

including the user and applications themselves.
According to the definition, context information is virtually
any type of information as long it is related to some entity
presented in the considered environment.

One computational area that will benefit from this new
source of context information is the area of Smart Environ-
ments. Smart Environments have lacked the autonomy and
adaptability necessary for truly intelligent actions. This was
in part caused by the absence of reasoning regarding the
user’s actions and status, in spite of the entire environment
being flooded by huge amounts of information. However,

context information cannot be obtained just by gathering this
information. It first must be processed and seen what relation
each information source has with each other so that the context
related to that information can be inferred.

One way to look at this problem is as an M2M orchestration
issue. M2M is the networking of intelligent small devices that
manage themselves and exchange information between them
without human intervention. Orchestration is the automated
coordination of a group of systems, organized by a central
entity. As seen in Figure 1, a smart environment is made
of a group of independent services. These services can be
organized as an orchestration process.

Sensors Actuators
Context Behaviour
Management Adaptation
Reasoning
Fig. 1. Conceptual Architecture of a Smart Environment

In this paper we will present a novel architecture to en-
hance M2M orchestration. The proposed architecture is based
around a platform that creates orchestration processes through
a graphical interface. Through this interface it’s possible to
generate BPEL services by graphically connecting existing
services. These services will then be deployed on an ESB
and can also be used to compose new services. New services
are also being developed for the purpose of supporting smart
environments. Among others, services that extract information
from a low level layer and services that reason about inhabi-
tants’ context.

A new reasoning services is also being developed to extract
relevant knowledge from non-structured context information.
By relevant knowledge, we mean the correct behavior of the
environment. This knowledge will then be used by the smart

environment’s actuators to enforce those actions. The novelty
of this service is the ability to use machine learning techniques
as opposed to static ontologies or manually defined rules.
This allows it to dynamically adapt to its present situation.
For example, differences in the deployed environment would
not mean that the system would need to be reconfigured, but
instead it would dynamically adapt to the new environment.

The APOLLO project main objective is the development of
a platform that supports new services in the area of machine-
to-machine (M2M) communications. The project aims to
develop a transversal technological platform that supports
management, control and monitoring of an heterogeneous
network of sensors and actuators. APOLLO exports a service
layer to third parties willing to develop next generation M2M
applications in various areas including Utilities, Transports,
Health, Agriculture, Distribution and Consumer Electronics.
The project platform will support from its start a vast set of
M2M Smart Services & Applications such as Smart Metering,
Smart Grids, m-Health (remote monitoring of patients), Smart
Cities, Smart Home and Smart Buildings according to a
Portuguese Government policy for the deployment of next
generation networks.

In Section I we will discuss the current state of the art
related to orchestration of M2M services and smart environ-
ments. Section III will expose the architecture, its advantages
and drawbacks. In Section IV we will discuss the conceptual
advantages of the proposed architecture and present future
work related to this project.

II. STATE OF THE ART

A Service Oriented Architecture (SOA) [3] supplies re-
sources as self-contained, independent services that can then
be reused. By doing so, these supplies can be maintained in
a more strict fashion and be used by any number of other
higher level services, even from an external entity to the one
that created them.

Currently, in SOA implementations, orchestration has
gained more popularity than choreography. The reason for
this is that choreography presents several implementation
problems, regarding communication overheads, even though
it brings some advantages over orchestration [4]. In orches-
tration, only a central coordinator has to know the process,
and the surrounding services can just worry about handling
requests, not being involved in the management of process,
and behave like any ordinary service. Choreography on the
other hand, needs every process to know how it will intervene
in the process, requiring information regarding other services’
statuses. This means that choreography has potential to be
more robust at the cost of added complexity.

The defacto standard language used to describe orchestra-
tion processes is BPEL [5]. This language describes each
participating service’s role and presents the work flow for the
interactions between them. However, this language depends
purely on services described through WSDL !,

Thttp://www.w3.org/TR/wsdl

Barricelli et al. [6] proposed an architecture that allows
domain experts to compose services through a graphical editor.
The editor uses a semantic search engine to locate relevant
services and an orchestration engine to handle the orchestra-
tion between these same services. The end product is a BPEL
workflow document which can then be used to create services
that execute the described process.

The typical scenario between participating services in a
BPEL process is by definition an M2M scenario and so we
can model any number of M2M scenarios as a BPEL process.
As mentioned before, smart environments can be modeled
as an M2M orchestration. The focus of this paper is on
M2M orchestration of smart environments. Currently smart
environments are developed as tightly coupled services that
can only be orchestrated in a single manner. Below we present
the most relevant smart environment projects.

Mozer [7], [8] applied neural networks [9] in home au-
tomation. The author developed a system that was able to
control air, heating, lighting, ventilation and water heating.
The main goal of the project was to anticipate inhabitants
needs and conserve energy at the same time. For that, it
applied reinforcement learning [9]. During a learning period,
inhabitants indicated their preferences whenever predictions
were incorrect by selecting themselves what they would expect
the system to do (for instance, if they want the lights on,
and the system did not turn them, users simply turned them
on). This way, the system would adjust itself to its inhabitants
preferences.

Vainio et al [10] proposed home-control system that uses
fuzzy logic rules [11]. Initial rules were given manually and,
through reinforcement learning, the home adapted by replacing
old rules with new ones. This method was applied to control a
lighting system in a smart-home laboratory environment. The
author concluded that users did not care if the rules generated
by the system didn’t match exactly what they wanted. It also
concluded that, after a certain amount of time, if a rule had a
big weight, it was likely to keep its importance, and new rules,
that correspond to sporadic actions, were quickly eliminated.

These smart environment systems use tightly coupled com-
ponents. We hope that our proposal sparks interest in loosely
coupled smart environment systems, and in doing so make it
easier to build and customize these kinds of systems. Loosely
coupled smart environments systems would also make it easier
to add/remove/modify components during runtime.

III. CONCEPTUAL ARCHITECTURE

The proposed architecture can easily, through a graphic in-
terface, orchestrate smart environments related services. These
services can be split into two categories: reasoning services
and context awareness services.

Reasoning services are services that process context infor-
mation and imbue the environment with the necessary behavior
to improve the inhabitants’ quality of life. Context awareness
services provide a bridge between the environment and the
system. Through the sensors it can perceive the environment’s

context information, while at the same time it can use actuators
to enforce changes onto the environment.

This section will be divided into three subsections relating
to each of these kinds of services and to the orchestration
application behind them. In Subsection III-A we integrate
the necessary concepts for a flexible M2M communication
framework. In Subsection III-B we present the reasoning
mechanisms that will be used by the smart environment. Fi-
nally in Subsection III-C we show the orchestration application
that will be able to use both of these in order to actually make
the smart environment work.

A. Context Awareness

In order to not only access the information provided by
different kinds of devices in Smart Environments, but to also
allow their control, a flexible communication and interfacing
framework needs to be set in place. Considering as well
that such environments are of a widely heterogeneous nature,
where involved devices support disparate sets of resources and
are accessed through a myriad of networking technologies, the
underlying communication framework is furthermore placed
under stringent requirements: not only must it be able to
simultaneously cater to the processing restrictions of devices
with greater or lesser CPU and memory capabilities, but it
has also to have the ability to provide information with a
meaningful degree of usefulness despite those capabilities.

In this sense, our framework exploits the information gather
and control capabilities of MINDIT [12], a flexible cross-layer
interfacing architecture. This architecture leverages Media
Independent concepts, such as the ones presented in IEEE
802.21 [13] and IEEE P1905 [14], where an abstraction layer
allows the interexchange of information between lower layers
(e.g., link access interfaces) and higher layers (e.g., application
and service processes) under a common interface. In this sense,
the conception and deployment of applications (and associated
operating system mechanisms) aiming to obtain information
and operate the different links, is simplified, with the mid-
dleware layer abstracting commands, events and information
definition, not only locally but also remotely towards other
agents located elsewhere on the network.

However, such media independent concepts are tailored
concerning a well defined scope, where the commands, events
and information elements supported by IEEE 802.21 concern
handover optimization and, for the IEEE P1905 case, hybrid
home networking. Achieving a flexible approach, MINDiT
goes beyond the static nature of the interfacing capabilities
of the previously mentioned technologies, and provides the
means for dynamic interface definition and retrieval in true
heterogeneous Smart Environments. Fig. 2 illustrates the de-
ployment of the generic interfacing mechanisms provided by
MINDIT on our framework, based on the concept proposed in
[12].

Orchestration Dynamic

Ontology
Agent Engine
O. Agent O. Engine

2. Interface Request

MMIF ;;ZZZZZZZZZZ::? MMIF
! I 3. Interface Response
N =g
8 =1 Legend:
5 2 o
Q. L Remote
S =2 ----> Interaction
puy . > (L2 or L3)
% Voo o MMIF
2 Local
o Interaction
-
loT Device/Service
Fig. 2. MINDIT Interfacing Mechanism

The interfacing architecture of our framework relies on
information exchanges between three different entities, com-
posing an IoT Device or Service, an Orchestration Agent and
an Ontology Engine.

o IoT Device or Service: The flexibility of our framework
allows to reach for information, and execute control
primitives, not only over physical aspects of a device
(e.g., activate a mechanical arm to execute a precise
movement, command a wireless interface to scan for
access points), but also in services running in those
devices or in network elements as well (e.g., switch video
codec to reduce required bandwidth, trigger mobility han-
dover procedures). The supported control and information
gathered procedures are defined in the Service Access
Point (SAP_x), composing the description of the list
of supported commands by that device or service. To
access a SAP, the node which composes the device or
contains the service, is coupled with a MINDiT Media
Independent Function (MMIF). This entity is a core
component of this information interexchange architecture,
aggregating a series of interfacing abstraction and control
mechanisms:

1) Local and remote information exchange: the MMIF
acts as an intermediate abstraction control point for
IoT communications, by receiving commands sent
from agents (internal or external to the device), and
collecting informational events from the SAPs. In
this sense, it manages transaction state regarding
these interactions, and is able to use Layer 2 and
Layer 3 transport. Remote interaction is always
executed between the MMIFs of the two separate
entities involved.

2) Agent discovery and capability exchange: the
MMIF, when requested by a local or external agent,

is able to respond with the supported capabilities
of the local node, regarding existing SAPs and
respective supported commands. Likewise, it is also
able to proactively broadcast this information in a
beacon-like nature, allowing its discovery.

3) Event registration: agents are able to register for

enabled IoT entities. This discovery provides initial
information indications that allow the agent to analyse
which IoT entities fall within its scope of interest. For
example, the announcement of the tags #sensor and
#temperature provide insight to the agent that this entity
deals with temperature sensing.

the reception of information events, when these are 2) Interface Request: With this information, the agent is
generated by the SAPs and conveyed to their local able to query the Dynamic Ontology Engine providing
MMIF. Therein, the MMIF analyses if any other the received tags, alongside any meaningful informa-
entity has requested for their reception and sends tion for the task belonging to its service logic (i.e.,
that information accordingly. requirements, network domain, identifiers, used access
o Orchestration Agent: This agent composes a service technology, amongst others).
or application entity implementing behaviour able to 3) Interface Response: The Dynamic Ontology Engine
consume information and control from other devices or extracts the necessary SAP interface from the available
services. Through the knowledge of existence of other non structured information repository, which has been
MINDiT-enabled entities (both remote and local), cou- previously populated by service provides and device
pled with the knowledge of their supported commands manufacturers with the necessary MINDIiT SAP infor-
and events provided by their SAP, the agents are able to mation. In this way, the MMI_User is able to gain
execute the operations associated to their service logic, knolwledge of the SAPs for interfacing with the intended
with support form MINDIT. It is important to notice that, devices.
in order to use these mechanisms, the agents need to 4) MIH Action: Empowered with the knowledge of the

be coupled with an MMIF to manage this information
exchange. Moreover, the MMIF has to be seen as a
complement component contained by the agent, and not
as the core component itself (i.e., the agent uses MINDiT
and not the other way around). In Fig. 2, the Orchestration
Agent’s logic establishing the bridge between its service
logic and the operation with the MINDiIT framework is
pictured as a MINDiT Media Independent User (MMI-
User).

Dynamic Ontology Engine: The Ontology Engine com-
poses the interaction with the orchestration and context
structuring components of our framework, in terms of
device and service interfacing. Concretely, the different
capabilities of devices and services in IoT environments
not only generate a plethora of different SAPs with
different capabilities, but are also subject to different
perceptions and interpretations of the raw data elements
and parameters with which they interact. As an example,
a temperature sensor can provide information in Celsius
or in Fahrenheit. An Orchestration Agent needs to be
aware that the numerical input sent by these devices

MINDIT
Agent

commands and parameters supported by the target IoT
device or service, the agent is able to send a Media
Independent Handover (MIH) Action command. The
structure of this message is based on the one defined
by the IEEE 802.21 standard regarding MIH commands.
Unlike that standard, where each command has a sepa-
rate structure defined by Type, Length and Value (TLV),
in MINDIT we have leveraged a generic TLV structure
able to identify the different commands made available
by the different SAPs, as seen in Fig. 3. In this way, not
only is the agent able to retain the MIH management
mechanisms (e.g., transaction management) via the MIH
Header as well as through indicating the MMIF Source
and Destination identifiers, it is also able to specify
the identifier for the target SAP, which is the intended
Action and the resulting value. This ensures a more
flexible approach in terms of defining the intended
behaviour to be executed in the target IoT Device or
Service, as verified in [12].

MINDIT
Device

. . L. . MINDIT MIH Action Message
can vary widely in definition. Moreover, the controlling
o . . K= MIH Source || Destination SAP Actiol Action
capabilities also share this concern. As such, MINDiT Header ||Identifier || Identifier | Identifier || ID. || Value
utilizes the knowledge extracted from non structured
information capabilities of our framework, to bridge the
P g Fig. 3. MINDIT Generic MIHF Action Message

commands and parameters advertised by the SAPs of
services and devices, to the necessities identified by the
intended agent’s behaviour.

Through these mechanisms, our framework uses the MIN-

DiT architecture to achieve the following capabilities:
The interactions involving these three entities are also

S . .) 1) To discover interfaceable IoT devices and services, along
identified in Fig. 2, following the following process:

with their media independent link access connectivity
information (e.g., IP address, MAC address, network
domain, transport layer port, protocol, etc.);

2) To register agents into those IoT devices and services,
allowing them to exchange connection establishment

1) Discover IoT Devices: Agents, motivated by their ser-
vice behaviour, wish to interact with different IoT de-
vices and/or services. Under our framework, the agents
use MINDIT mechanisms to discover other MINDiT-

data (e.g., to support authentication and other security
processes) as well as to manifest interest in collecting
informational events when triggered;

3) To dynamically request the interfacing primitives and
parameters supported by the IoT device or service’s
SAP, by interacting with the non structured information
repository from our framework;

4) To send those commands, and collect back information
or command results, towards the target IoT device or
service.

All this behaviour is achieved through a single generic
message exchange definition, which can occur at either Layer
2 or Layer 3, according to the network and devices capabilities,
which places a low impact on application service design, but
providing still meaningful information content and capabilities
to high-level processing. Contrary to other solutions em-
ploying resource-consuming service-oriented communication
procedures that place stringent requirements over IoT devices
(e.g., Devices Profile for Web Services (DPWS), Efficient
XML Interchange (EXI) or Web Service Definition Language
(WSDL), or on the other end, solutions that focus on wireless
sensor link optimization aspects [15], MINDiT empowers our
framework with a flexible, generic single protocol for IoT
device interfacing.

B. Intelligent Systems

The APOLLO project’s main objective is to export a service
layer that allows third parties to develop next generation M2M
applications. Smart environments are important applications
that can be developed using the APOLLO service layer. In
order to develop smart environments it is necessary to provide
reasoning services. These reasoning services are necessary
to comprehend the environment context through the sensors.
Due to the heterogeneous nature of the information provided
by the sensors and the dynamic ambient associated with
smart environments it is difficult to develop efficient reasoning
services. In this subsection we will discuss the difficulties
of developing reasoning systems for smart environments and
proposed a method that is able to cope with heterogeneous
environments.

As previously mention, context information is any informa-
tion that can be used to characterize an entity’s situation. It is
important to notice that this definition of context information
does not specify any structure to share context information.
This is strongly related with the heterogeneity associated with
context information. Due to this heterogeneity, it is difficult
to store context information into a relational database, as
show in Figure 4. Context is better modeled as a continuous
stream of information [16]. This approach has the advantage
of facilitating the storage of the context information. On the
other hand this approach does not enforce a relational model.
The majority of knowledge extraction techniques rely on the
relational model and the relations defined by it.

The most common approach to minimize this problem is
to define an ontology. In computer science, an ontology is
a description of the concepts and relations that can exist

Parse

Streams
e <: <
Streams

Fig. 4. Due to the heterogeneity associated to smart environments there is
no dynamic function to correctly map an unstructured group of streams into
a relational database.

Sensors

between them [17]. Currently several context-aware systems
use ontologies to map the continuous streams of data into
a relation model. After that, conventional techniques can be
applied in the model in order to extract meaningful knowledge.
However, the use of ontologies implies a tradeoff between the
quantity of represented concepts and the number of different
scenarios the system is able to support. Another important
issue about the use of ontologies is that users have to define all
the relations between concepts. In other words the reasoning
process becomes limited to the relations previously defined by
users.

Currently we are developing a method to extract knowledge
from unstructured context information that does not require
static ontologies. The main objective of the proposed method
is to learn the underlying model of unstructured information
through machine learning techniques. The underlying model
can be perceived as a dynamic ontology that is defined by the
system itself.

Figure 5 shows the conceptual architecture of the platform.
At this stage of development i is not relevant for the platform
how the sensors send information. Document, in this context,
represents a semi structured file (i.e. xml, json or cvs files) that
contains data sent from some sensors. The platform analyses
data from sensors and computes the underlying model, i.e. a
dynamic ontology. The data is rearranged according to the
underlying model. After this step conventional knowledge
extraction methods are used to find relevant patterns. The
majority of knowledge extraction frameworks provide support
and confidence measures. These metrics are used by the model
extraction process to determine the quality of the underlying
model.

Figure 6 shows an expansion of the platform. The received
documents are parsed and stored into a group of streams of
data. Each stream is identified by the names extracted from the
entity contained in the documents. E.g. if a document contains
an entity named temperature and an associated value of 25,
this value will be stored in a stream named temperature.

Two different analysis methods are used on the streams:
statistic analysis and semantic analysis. First correlations ma-
trices (statistic analysis) are computed based on the values
on the streams. A strong mathematical correlation can be

[m=g]
¥ T".ﬂ’ Documents ledel
Extraction
Smart ‘
Devices
& ‘;* . Knowledge
*x\, = Extraction
Underlying model Datasets
Knowledge
Fig. 5. Architecture of the knowledge extraction platform.

perceived as a relation on the underlying model.

After semantic analysis is used to discover relations between
streams’ names. The meaning of each streams’ name is
retrieved from a semantic web service. Text mining techniques
are used to detect relations in the meanings of the streams’
names. A graph of concepts is built based on the relations
discovered. Each node in the graph represents a stream’s name,
while each edge represents a relations between two concepts.

After clustering algorithms are used to group the related
streams. The results of the statistic (correlations matrices) and
semantic analysis (graph of concepts) are the distance metrics
used by the clustering algorithms. The underlying model is
composed by the groups of concepts and relations returned by
the clustering algorithm.

These type of analysis are subject to ambiguities in the
concepts and relations. Association rules are used to detect
relevant patterns in the rearranged data. The model extraction
process uses the support and confidence framework to solve
ambiguities in the concepts and relations. This feedback loop
can be perceived as reinforcement learning.

Conceptually this approach offers some interesting advan-
tages:

1) The proposed platform does not require the definition of
static ontologies.

2) The dynamic model can cope with the evolution of
concepts and relations.

3) The platform has the potential to discover unknown
relations.

Currently we are finishing some details in the architecture of
the knowledge extraction service. There are some open issues,
e.g. how the platform should optimize based on the knowledge
extraction feedback, what clustering algorithm should be used,
what semantic services offers relevant information. These
concerns are being addressed in a PhD Thesis. After solving
these open issues the platform will be implemented as part of
APOLLO project.

Parse Streams

@— _+7
.
Statistic Co-relation
Matrix
S

Analysis
Semantic ®© @) ©
Analysis .e‘
R e
Graph of
concepts
Machine Knowledge é‘@
Learning Extraction e
S G

Knowledge

Underlying model
Datasets

Fig. 6. Architecture of the model extraction process.

C. Orchestration

Smart environments need to cope with a diversity of under-
lying hardware and different user needs. One way to cope
with this diversity is through the use of a SOA. A SOA
allows components to be modules as independent services,
creating a loosely-coupled system. It also allows the use of
external modules that would be otherwise unavailable, such as
proprietary services in which the implementer is not interested
in revealing the internal logic. While this last one is beyond
the scope of a typical smart environment, when one considers
a city-wide deployment, having such capabilities starts having
interesting applications.

One problem users face in a smart environment is that
they currently might not be able to configure the behaviors
they want the system to take. Since they may not be able to
program, either time constraints or skills, the use of services
together with a way of providing orchestration capabilities
for them is one of the most promising options. As such, we
decided to allow users with little programming skill, as well as
domain experts to orchestrate services as they please through
a supposedly easy to use graphical interface.

The orchestration architecture can be seen in Figure 7. We
can divide it into four major components:

o Orchestration Creator Service

o Graphical Orchestration Interface

o Enterprise Service Bus

e Services

The first two are this paper’s contribution to this orches-

HTTP Server

Graphical Orchestration Interface

Application Server

Enterprise Service Bus]
Orchestration
Creator
Service
[Service] [Service] [Service]
Fig. 7. The orchestration architecture

tration architecture. In fairly simple terms, the Graphical
Orchestration Interface will obtain a list of available services.
It will then provide a graphical representation of these services
for the user to compose higher level services with. Afterwards,
it creates a process description from the users input and call
the Orchestration Creator Service. This service will then create
and deploy a new service based on the obtained process
description.

The Graphical Orchestration Interface is being implemented
in HTML/JavaScript using Three Node JS?, thus ensuring that
most devices will be able to use it. The process description
language to be used is most likely going to be BPEL. However,
the current BPEL specification can only handle services de-
scribed through WSDL. This limitation restricts the ability to
orchestrate services that do not naturally use such description
language, such as those using REST. These kinds of services
are often much simpler and can be implemented using a wider
variety of devices, increasing the scope of the Internet of
Things. A number of BPEL extensions have been proposed
over the years to address this restriction [18]-[22]. Regarding
this issue, we are still in the process of researching how we
should make BPEL processes interact with WSDLlIess services
such as REST.

As for the ESB, we’ll use is JBoss’s Switchyard3 due to
a business requirement and as such the we’ll also use JBoss
AS*.

IV. CONCLUSIONS
Current smart environments are not flexible enough to be

considered truly intelligent. They use tightly coupled compo-

Zhttps://github.com/idflood/ThreeNodes.js
3http://www.jboss.org/switchyard.html
“http://www.jboss.org/jbossas

nents and cannot cope with changes in the smart environment,
e.g. adding new sensors to the system. In this paper we intro-
duced a new conceptual architecture for M2M orchestration
that conceptually solves these issues. With it, we proposed a
new intelligent system to extract context from non-structured
information and a new orchestration mechanism to allow
users of little programming skill to create processes based on
deployed services.

We hope this architecture will facilitate the proliferation
loosely coupled smart environments that do not rely on static
ontologies or only user defined rules. Our orchestration plat-
form enables the use of a set of services that ranges from
user defined rules to truly intelligent systems. Additionally,
the move to a SOA will help standardize the way smart envi-
ronment are controlled and allow the collaboration of several
smart environments, potentially enabling smart environments
of arbitrary sizes to be built with ease.

Currently, we’re finishing an implementation of the context
management component based on the XMPP protocol and
key-value databases. Afterwards, we’ll design the reasoning
services provided by the APOLLO platform. As previously
mentioned, we are still trying to make BPEL processes inter-
act with WSDLless services such as REST. After analysing
Switchyard’s framework, we decided to implement a new
component that enable services to access the service registry.

V. ACKNOWLEDGEMENT

This work has been partially funded by the Portuguese
Innovation Agency/ National Strategic Reference Frame-
work (AdI/QREN) under grant agreement No. 2011/021580
(APOLLO project).

REFERENCES

[11 U. E L S. Group, “Future internet report,” ICT Knowledge Transfer
Network, Tech. Rep., May 2011.

[2] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context and
context-awareness,” in Proceedings of the Ist international symposium
on Handheld and Ubiquitous Computing, ser. HUC ’99. London,
UK,: Springer-Verlag, 1999, pp. 304-307. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647985.743843

[3]1 M. Bell, Service-Oriented Modeling: Service Analysis, Design, and
Architecture. Wiley Publishing, 2008.

[4] S. Quinton, I. Ben-Hafaiedh, and S. Graf, “From orchestration to chore-
ography: Memoryless and distributed orchestrators,” in FLACOS’09
Workshop Proceedings, 2009.

[5] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann,
K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana,
“Bpeldws, business process execution language for web services,” IBM,
Tech. Rep., 2003.

[6] B. R. Barricelli, P. Mussio, S. Valtolina, M. Padula, P. L. Scala,
and A. Piccinno, “Visual workflow composition through semantic
orchestration of web services,” in Proceedings of the International
Conference on Advanced Visual Interfaces, ser. AVI ’10. New
York, NY, USA: ACM, 2010, pp. 405-405. [Online]. Available:
http://doi.acm.org/10.1145/1842993.1843079

[71 M. Mozer, “The neural network house: An environment that adapts to its
inhabitants,” in Proceedings of the American Association for Artificial
Intelligence, A. Press, Ed., 1998, pp. 110-114.

[8] ——, “Lessons from an adaptive home,” in Smart Environments: Tech-
nology, Protocols and Applications, D. J. Cook and S. K. Das, Eds.
John Wiley & Sons, Inc., 2005, pp. 271-294.

[9] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[10]

(11]

(12]

[13]

[14

[15]

A.-M. Vainio, M. Valtonen, and J. Vanhala, “Proactive fuzzy control and
adaptation methods for smart homes,” IEEE Intelligent Systems, vol. 23,
pp. 4249, 2008.

J. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proceedings
of the IEEE, vol. 83, no. 3, pp. 345 =377, mar 1995.

D. Corujo, M. Lebre, D. Gomes, and R. Aguiar, “Mindit: A
framework for media independent access to things,” Computer
Communications, vol. 35, no. 15, pp. 1772 — 1785, 2012, smart
and Interactive Ubiquitous Multimedia Services. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S01403664 12000734
IEEE, “leee standard for local and metropolitan area networks- part 21:
Media independent handover,” IEEE Std 802.21-2008, 21 2009.

“Jeee draft standard for a convergent digital home network for heteroge-
neous technologies,” IEEE P1905.1/D06, September 2012, pp. 1 —125,
11 2012.

W. Masri and Z. Mammeri, “Middleware for wireless sensor networks: A
comparative analysis,” in Network and Parallel Computing Workshops,
2007. NPC Workshops. IFIP International Conference on, sept. 2007,
pp- 349 -356.

[16]

(17]

[18]
[19]
[20]
[21]

[22]

N. Santos, . O. M. Pereira, and D. Gomes, “Context storage using nosql,”
in Proc. 2011 Conferéncia sobre Redes de Computadores, Coimbra,
Portugal, November 2011.

T. Gruber, “Toward principles for the design of ontologies used for
knowledge sharing,” International Journal Human-Computer Studies,
vol. 43, no. 5-6, pp. 907-928, November 1995.

C. Pautasso, “Bpel for rest,” in Proc. of the 6th International Conference
on Business Process Management (BPM 2008, 2008.

, “Restful web service composition with bpel for rest,” Data Knowl.
Eng., vol. 68, no. 9, pp. 851-866, September 2009.

T. A. S. Foundation, “Restful bpel, part i,” 9 2012. [Online]. Available:
http://ode.apache.org/restful-bpel-part-i.html

“Restful bpel, part ii,” 9 2012. [Online]. Available: http:
/lode.apache.org/restful-bpel-part-ii.html

J. Nitzsche, T. van Lessen, D. Karastoyanova, and F. Leymann, “Bpel
light,” in 5th International Conference on Business Process Management
(BPM 2007). Springer, Sep. 2007.

