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Abstract—Previous decades brought about a revolution in ra-
dio and microprocessor technology that made possible a plethora
of new applications. In particular, the possibility of using many
inexpensive sensor nodes interconnected by wireless networks
(WSN) for a number of ends, such as pollution monitoring
and defense, draw the attention of the research community.
WSN are usually heavily resource-constrained. Of particular
relevance is energy, since in many applications nodes should
operate during long periods from batteries. The literature on
this topic reveals many techniques to improve energy efficiency,
one of them being the use of network aggregation. However, the
problem of aggregation of duplicate sensitive summaries (e.g.
sum, average, histogram, etc.) in multi-path routing networks is
not fully resolved. This paper addresses this problem by sending
redundant aggregated information through different paths, so
data can be reconstruct to obtain the exact summary, provided
that there is at least one feasible path. Two algorithms are pre-
sented, one better suited for networks dominated by link errors
and another suited to networks where the predominant error
source is node failures. The algorithms are light during normal
network operation, with the most intensive processing performed
during the initialization phase. The approach presented herein
outperform previous solutions found in the literature in two key
aspects: complete topology independence and aggregation depth
independence.

Index Terms—Wireless Sensor Networks, Aggregation, Multi-
path, Spatial Query

I. INTRODUCTION

Wireless sensor networks (WSN) have recently emerged
as a synergy of two related technologies, i.e. radio and
microprocessors technology. Both of them had exponential
improvements in size, cost and functionality in recent years,
opening the door to applications so diverse as air monitoring,
forest fire detection, structural monitoring, water monitoring,
etc. Furthermore, such improvements are expected to keep the
pace in the near future, thus WSN should become even more
prevalent.

Nonetheless, there are a number of aspects that need to be
addressed in order to make WSN reach their full potential.
One of the key aspects is energy efficiency, since in many
application domains node’s energy source are batteries and
WSN should operate during long periods, with low or no
maintenance at all. This aspect turned energy conservation, i.e.
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devising mechanisms to maximize the lifetime of the network,
one of the most studied aspect of WSN.

Techniques proposed to reduce nodes’ energy consumption
include the use of network aggregation, the use of cluster
heads (with or without cluster head rotation), exploitation of
the inherent spatial correlation of readings among neighbor
nodes, variation of transmission energy, sleeping during long
periods of inactivity, exploitation of temporal correlation of the
signals (data caching, estimation, system identification and so
on), among others.

One approach to data transmission from common nodes to
the root is to have all nodes transmit their data integrally to the
root and at the root perform the computations on the collected
data. However, this approach is energy-wise inefficient due to
the rather high number of messages that are sent. A more
efficient approach is the gradual aggregation of values as
they are transmitted upstream, which is called in-network
aggregation.

On the other hand, WSN links are fragile. Particularly, they
can be temporarily unavailable, are subject to relatively high
error rates or be asymmetric, among other issues. Hence, the
use of multi-path routing has been proposed [1]–[4] to lessen
its effects.

However, the use of multi-path routing may cause errors in
the aggregation of duplicate-sensitive functions. A function is
said to be duplicate-insensitive if its result does not change
upon the introduction of a duplicate argument. For example,
min and max function are duplicate-insensitive. A function
is said to be duplicate-sensitive if its output changes with the
addition of an argument, even if it is a duplicate. For example
the sum function, in which introducing a non-zero argument
more than once causes different results, is duplicate-sensitive.

Many attempts have been made to solve this issue, for
example, by giving approximate answers, by forcing single
path routes, by searching for aggregate-insensitive versions
or by decomposing these functions in a series of duplicate-
insensitive functions and then query the WSN for each of the
new functions, among others.

None of the already introduced solutions satisfies the initial
goals, since all of them either have an error by nature (ap-
proximations based approaches) which contradicts the goals
of multi-path, or use single routes, which does not offer any
redundancy, or considerable increase the number of messages
that are required to compute the aggregate (alternative func-



tions approaches), thus defeating the original purpose of the
aggregation, which is to reduce the number of messages in
order to save energy.

This paper addresses this problem by sending redundant
aggregated information, so that data can be reconstructed to
obtain the exact summary, provided that there is at least
one possible path. Two algorithms are presented, one better
suited for networks dominated by link errors and another
suited to networks where the predominant error source is
node failures. The algorithms are light during normal net-
work operation, with the most intensive processing performed
during the initialization phase. The approach presented herein
outperforms previous solutions found in the literature in two
key aspects: complete topology independence and aggregation
depth independence.

The remaining of this paper is organized as follows. Sec-
tion II presents an overview of the related work. Section III
presents the methodology proposed in this paper to carry
out the aggregate of duplicate-sensitive data in multi-path
networks. Section IV presents simulation results carried out
to assess the correctness of the algorithms and to evaluate its
performance. Finally, section V concludes the paper.

II. RELATED WORK

The field of WSN has a vast body of knowledge, too vast
to be covered in the related work section of a single paper
as can be seen in [5]. Therefore, this section is focused only
in contributions closely related to problem addressed in this
paper.

The use of aggregation in WSN excels in metrics such as
energy expenditure and network lifetime, as shown in [6].
Furthermore, in the same reference it is also shown that the
denser the networks the higher the benefits of aggregation.
Similar results were reported in [7]. [8] presents a meta
level view of aggregation and argues for a co-design of the
integrating parts of the network.

Watfa et al [9] build an index tree similar to the SRT
of TinyDB [10] (broadcast level and level = min(level) + 1).
The authors used an index table to decide the aggregation
value, plus a common value agreement, which is a value
that nodes with the same parent are supposed to verify
abs(nodereading − cv) < δ. cv is computed as the average of
the children reading and is sent back to them. If a children
verifies the last condition then it does not send its data.
max /min are also based on cv, thus may lead to erroneous
values. In fact, this aspect is common to approaches that use
a cluster head and spatial correlation. Nodes with more than
one parent alternate between sending messages to each of its
parents.

Liao et al [11] leverages the (ant) bio-inspired path finding
algorithm to build a routing tree. In this algorithm, all source
nodes explore all the paths to the sink, leaving a certain amount
of pheromone at each link. The amount of pheromone left on
each link of each path from a source to the sink is a function of
several factors (e.g. path size). The amount of pheromone on
each link is the sum of the amount left by on each paths that

goes through the link. The higher a paths’ pheromone levels,
the more likely it will be active. However, this algorithm is not
light. A similar approach is pursued in [12] and in references
therein.

Ganesan et al [13] use a wavelet based approximate ag-
gregation technique to store the results of several queries at
different network hierarchies. Nodes at different hierarchies
store results with different precisions. Whenever a query with
a certain precision is done, it drills down the network until find
a node with precision enough to answer it. Due to the high
volume of data generated by this approach, an aging scheme
was employed.

Considine et al [1] present the FM-SKETCH (introduced
by Flajolet and Martin), which approximate the number of
distinct elements of a superset by seeing only its initial part
and such sketch are used to estimate the number of distinct
nodes in a network — approximate count summary — which
is well suited for multi-path networks. The paper generalizes
FM-SKETCH to approximate sum summaries by having each
node producing val (val is the value that the node sensed)
distinct elements into the superset. Evidently, the number of
distinct elements of this superset is equal to the sum summary.
The sum summary is approximated by using the FM-SKETCH
on the superset. A number of optimizations are provided. All
the same, this approach that supposedly reduced the amount of
data by computing approximates, actually for typical relative
errors (0.85-0.95), it uses about the same amount of memory
as traditional exact summaries. Therefore, the use of exact
aggregation techniques with a data-caching or send-on-delta
can be discarded. The authors compared their approach to TAG
and to the LIST approach, i.e. each node sends the value of the
aggregate and the set of nodes used to compute the aggregate,
which is similar to the approach provided herein, however,
their LIST approach is considerable less optimal. First, nodes
always send a huge set, second the node that is receiving may
not be capable of finding a way to aggregate the received data
due to overlaps.

A Sparse aggregation scenario is studied in [14], by ex-
ploring dense WSNs with a small number of hotspots. A
mechanism to find suitable routes was also presented. Other
types of approximate aggregations have been proposed as is
the case of quantile tracking [15], [16], top-k estimation [17],
[18] though the later group tend to be more exact. [19] is an
example in which an approximation of an histogram is used
to compute queries in WSN, however, the algorithm used is
exact if the histogram is exact, but the authors do not provide
any algorithm to compute exact histograms.

In [20] and later at [21] the authors use a hybrid
periodic\asynchronous model, in which data is sent period-
ically, however, rapid transition are responded to by immedi-
ately sending data asynchronously. Nevertheless, the authors
did not provide any difference between this paradigm and
event triggered transmission with a periodic I’am alive mes-
saging. The asynchronous traffic is controlled using filters.
Whenever a value is within the filter’s range it does not get
transmitted. [22] aims at similar goals, using data caching and



aggregation at each level of the tree.
In [23] it is introduced the direct diffusion of digests

(aggregates), in which nodes compute their value as a function
of their current value and the value received from neighbor
nodes. And they start sending this new value, which can
be piggy-backed in a periodic beacon. It takes at most the
diameter of the network (in number of hops) to diffuse such
digests. Obviously, in this form it only can compute digests
of exemplary functions. Exemplary functions are the ones that
can be computed as the result of an aggregate of previous
values and one single new value. In fact, they have this
name because their result depend on only one value, such
as max and min. For non-exemplary function, the authors
propose that first, a direct digest that is always ”won” by the
sink is performed, second, each node would memorize the
node from which it received the winning diffusion (parent)
until a tree is formed, third, diffusion would be sent along the
tree that emerged in the process. All the same, the authors do
not show any difference between their proposal and the regular
diffusion. Notwithstanding, the paper presents an interesting
study of link asymmetry in WSN, which led the authors to
propose a mechanism to switch parents whenever a certain
link is asymmetric.

Nath et al [24] provide a formalization of the concept
of diffusions. Three operations are considered synopsis gen-
eration, fusion and evaluation, that work as suggested by
their names. The paper also provides a number of, so called,
necessary and sufficient conditions for correctness, though, it
also presents a situation that verifies all such conditions but
does not produce the correct value, implying that the presented
conditions are not sufficient. [25] uses a fuzzy logic approach
to compute exemplary functions. Each node has a fuzzifier
that decides whether to send the data. A comparison with the
‘no aggregation scenario’ was made, though no comparison
with classical aggregations was presented. It was also used
the sleep approach.

In [2] it is proposed to solve the problem of multi-path
aggregation of duplicate sensitive nodes by keeping nodes
from aggregating data if there is a possibility of duplication.
To this end, upon the construction of the multi-path tree, nodes
send theirs and their parents addresses along with their hop
count to the root. Nodes that join the network, would know
each of its parents and its parents’ parents. Based on this
information, if the node as more than one parent, then it
chooses the parents parents with most paths from it as the
aggregation point, otherwise it chooses its only parent as the
aggregation point. Only two levels of the WSN are searched
for, therefore it might happen that the link of the chosen
parent’s parents up the tree may fail while there is another
parents’ parents link which is operational. The fact that the lost
of one (uptree) link/node can cause the loss of information of
many of children nodes puts in question the very use of multi-
path (redundancy). (The approach advocated in this paper has
the property that for any set of link failures it can always
compute the aggregate of the values that can still reach the
sink.)

Manjhi et al [3] use an hybrid approach to routing. Using a
tree approach closer to the leaves and a multi-path approach
closer to the sink. This helps to leverage the advantages of
trees (low latency, low messaging) with the advantages of
multi-path (increased robustness).

Al-Karaki et al [26] present both an exact and an approx-
imate algorithms to find optimal routes for aggregation in
WNSs. The exact algorithm is stated as an integer linear pro-
gramming problem, which the authors argue to be too complex
to be solved in WSN. Hence, they propose an approximate
genetic algorithm. However, the genetic algorithm is itself
computationally heavy and involves many message exchanges,
which is exacerbated by being performed in several rounds,
thereby consuming the very same energy that the algorithm
aims at saving.

Another type of aggregates that gain a certain moment in
the community is the gossip based aggregation [27]–[32], in
which each node 1) read its own value, 2)aggregates it with
messages that it receives and 3) sends it to a random neighbor
a fraction of the its current value while maintaining another
fraction of it. After an algorithm-dependent number of rounds,
the aggregates converge to the correct value. Usual objections
include the apparent lack of benefits for the common WSN,
higher latencies and increased number of communications.

Other types of optimizations to WSN that do not relate to the
main contribution of this paper have been proposed, such as
the exploitation of temporal correlation [33]–[38] and spatial
correlation, such as [12], [14], [39]–[46].

A. Count Summary

The main contribution of this work is independent of which
count summary is used. However, it requires that the count is
performed prior to carrying out a duplicate-sensitive function,
or at least, to have a cache with the nodes in the network.
Therefore, it is paramount to use an efficient count summary
that should be performed as infrequently as possible.

The following conditions reduce the need to perform count
summaries: 1) parent nodes trigger a count summary action
only if a given child does not communicate for a given period
of time (Talive), 2) all children send a message when they
are initialized or whenever they notice that have a different
parent node. Additionally, they also send at least one message
(of whatever type) with a given time window (Talive). The
optimum value for Talive is a compromise. On the one hand it
must be as big as possible to not spoil too much energy. On
the other hand, large Talive impairs network reactivity.

To increase the efficiency of the count summary, nodes use
a bitmap addressing, in which each node address corresponds
to a bit in a address array. Addresses can be pre-programmed
prior to the deployment of the network. Leaf nodes put
themselves in the count summary by sending a message with
their bit set. Aggregations of the count summary are performed
by implementing a bitwise OR of partial results. The number
of distinct nodes that are offspring of a given node is equal
to the number of set bits on its bitmap array. Evidently, the
number of nodes in the network is equal to the number of



offspring of the root node plus one (the root itself). Due to
the simple nature of this aggregated, a formal proof of its
correctness will not be provided.

It should be remarked that a similar counting mechanism
was proposed in [24]. However, their approach started with
the bitmap addressing but at the higher levels used the FM-
SKETCH [1], which conditions their approach to provide
approximate results, and uses an high amount of memory 1.

III. MULTI-PATH AGGREGATION

This paper considers mesh-like networks, where each node
can reach only a limited subset of other network nodes, nor-
mally the nearest neighbors. Nodes’ data should be forwarded
to a particular node, designated by sink. Links that connect
nodes are subject to errors, either transient or permanent.
It is assumed that the underlying communication protocol
provides error detection capabilities, discarding erroneous
frames. Nodes are also subject to errors and are fail-silent, i.e.,
they either operate correctly or do not send any information.
Furthermore, the following definitions apply:

• The WSN consists of Ni, i = 0...K nodes.
• Without loss of generality, in the remainder of this paper

N0 designates the sink node;
• Each node is connected to one or more neighbour nodes;
• Each link between two nodes is designated by Li,j , i, j ∈

0...K;
• Ti is a bitmap representing the addresses of the node

itself and its offspring
• Ak=[a,b,c, ...] denotes the aggregation of values a, b, c,

...;
• Mi designates a message sent by node Ni to its parent;
• A message can contain several aggregates. Aggregates

sent in the same message are connected by a + symbol.
The system undergoes three sequential phases: physical

topology discovery, virtual topology set up and, finally, the
data collection, which is the normal state. Permanent errors are
considered as topology changes and thus this whole process
may be repeated as often as necessary, although eventually
only over specifics parts of the network affected by errors.

In the first phase all reachable nodes and its connections are
identified. More concretely, each node discovers which nodes
are its offspring. This is achieved, for example, by using a
count summary as the one previously described in section II-A.

Once the topology is identified, phase 2, which consists in
the virtual topology set-up, is started. At this stage each parent
knows all the paths to each one of its offspring. Based on
this information, each parent sends a message to each one of
its children indicating if and how data should be aggregated,
thereby creating several groups of aggregates. The decision
about which data should be aggregated is taken primarily with
a focus on minimizing the total number of messages.

Two different aggregation strategies are proposed in this
paper, one more suitable to handle node errors and another

1approximate queries are used primarily to reduce the amount of time and
memory used to perform a given action, whereas exact queries are used when
the correctness of the results have primacy

more efficient in the presence of link errors. The difference
between these strategies resides primarily in which messages
are aggregated together. In the former case, messages are ag-
gregated such that if all messages that come from a given child
are lost the aggregates can still be reconstructed, provided that
there is at least one redundant link, whereas in the latter case
the focus is on messages lost on a given link. The best strategy
to use in a particular WSN should be selected according with
the most frequent error source.

Finally, after phase 2 is complete, the system enters the
normal operation phase, in which the data is collected. Dur-
ing this phase each parent node receives messages from
its offspring, eliminates or reconstructs data, depending on
the existence of errors, and forwards the aggregates defined
during phase 2 to its parent node. Data recovery requires
only a few table look-ups and simple algebraic operations
on the received aggregates, thus during normal operation the
processing overhead is small.

A. Multipath Aggregation of Duplicate Sensitive
Summaries — Node Error Case

The strategy proposed to deal with node failures consists
in setting one of the children to aggregate its own data with
the data of its offspring, while the other children send several
aggregates. These aggregates consist in its own data aggre-
gated with the data of its offspring, followed by aggregates that
contain the data that do not intersect with previous siblings in
the same level. To illustrate this strategy, consider the simple
WSN depicted in figure 1.

As depicted in figure 1, node N1 sends a message composed
only by one field, which aggregates its own data and the
data of its offspring (M1 = [1,4,5]). Node N2 sends one
message with two fields, one aggregating its own data with its
offspring (A1=[2,5,6]) and another field that contains the data
that does not intersect T1 (i.e. T2�T1 ; A2 = [2,6]). Thus,
M2={[2,5,6]+[2,6]}. A similar procedure is applied to node
N3. Table I presents the aggregates conveyed by messages
M1 to M3.

In case there are no errors, the sink receives aggregates
Ai = [1, 4, 5], [2, 5, 6], [2, 6], [3, 6, 7], [3, 7], i ∈ 1..5, respec-
tively contained in messages M1, M2 and M3. Note that in the
third node there are some duplicate entries, that were removed.
It can be trivially verified that the correct value can be recov-
ered by taking the last field of each one of these messages.
Therefore, this strategy meets the first goal addressed in this

N0

N1 N2 N3

N4 N5

[1,4,5] [2,5,6]+[2,6]

N6 N7

[3,6,7]+[3,7]

Fig. 1. Example 1: Node Error Strategy



child index message to send
1 {T1}
2 {T2}+ {T2\T1}
3 {T3}+ {T3\T1 ∪ T3\T2}+ {T3\{T3\T1 ∪ T3\T2}}
...

...

TABLE I
EXAMPLE OF AGGREGATES FOR NODE ERRORS

paper, which is the ability to remove duplicates in the presence
of redundant paths.

Lets now consider the case in which one of the nodes fails,
e.g. node N1. Observing figure 1, it can be seen that data
from node N1, which failed, and from node N4, which has no
redundant path to the sink, will be lost. However, data from
all the other nodes should be recoverable. In fact, the sink
node receives aggregates [2,5,6] + [2,6] and [3,6,7] + [3,7],
respectively contained in messages M2 and M3. Data from all
accessible nodes can be recovered by combining the first field
of M2 with the last field of M3. If the failing node is node N2,
the sink node receives aggregates [1,4,5] and [3,6,7] + [3,7].
Data from all accessible nodes can be obtained by combining
aggregates [1,4,5] and [3,6,7]. A similar reasoning could be
carried out regarding the failure of any node in the network.
Therefore, the proposed strategy meets the second goal of the
paper, which is the ability to recover data that has redundant
paths to the source in the presence of node errors.

This idea can be extended to a larger number of children,
as shown in table I, i.e. each children first aggregate all its
offspring, then aggregate all of its offspring minus the nodes
that are reachable by nodes above it in the table, then do the
same with minus sets from two nodes in above, then three and
so on.

It can be seen that this approach may lead to an relatively
high number of messages that must be sent by nodes further
down the table, since the worst case number of aggregates
grows as a power of two. Methods to dramatically reduce the
number of entries of such table area addressed latter on.

B. Multipath Aggregation of Duplicate Sensitive
Summaries — link Error Case

The link error case requires that whenever a link fails,
the parent (or the root) node should receive all the data
necessary to compute all aggregates, provided that there exists
an alternative path.

The algorithm proposed to achieve this goal consists in
having each node sending two aggregates, one containing the
data related with its descendants that are reachable only by
itself, and another aggregate composed by the data pertaining
to nodes that communicate both with itself and its siblings.
The algorithm resembles the one presented for the node error
case, except that in the error node case the operation was a
bitwise complement, whereas in this case (link error) the sets
are disjoint in relation with the other children’s children count
summaries.

To illustrate this strategy, consider the simple WSN depicted
in figure 2.

As depicted in figure 2, node N1 sends a message composed
by two fields, one aggregating its own data and the data
of descendants that are reachable only by itself (node N4,
in the present case) and another aggregate with the data of
descendants shared with each one of its siblings (only node
N5, in the present case), therefore M1 = {[1,4]+[5]}. Node N2

sends one message with three fields, one aggregating its own
data only, since all its descendants are shared with its siblings,
and two other aggregates with data of descendants shared
with each one of its siblings, therefore M2 = {[2]+[5]+[6]}.
Following a similar reasoning, M3 = {[3,7]+[6]}.

In this simple case it can be checked, by exhaustion, that this
is a solution to the problem. In the absence of errors, the sink
receives aggregates Ai = [1, 4], [5], [2], [5], [6], [3, 7], [6], i ∈
1..7. The exact value can be recovered by adding A1, A2,
A3, A5 and A6. Thus, without errors the exact value can
be recovered even in the presence of redundant paths, by
sequentially adding the aggregates that have values not added
before. By simple inspection of the aggregate set received by
the sink, it can also be observed that each value appears in as
many aggregates as the number of distinct paths to the sink.
E.g. node N5 that has two links appears in sets A2 and A4,
while node N4 appears only in one aggregate, since it has
no redundant link. Thus, the redundancy is visible at the sink
and it should be possible to recover the exact aggregate value
even in the presence of errors. E.g. if link L5,1 fails, the sink
receives aggregates Ai = [1, 4], [x], [2], [5], [6], [3, 7], [6]. The
exact value can be obtained e.g. by taking A1, A3, A4, A5

and A6. The same reasoning can be applied to other sets to
confirm that it is possible to recover the exact value of an
aggregate function, even in the presence of link errors, by
simple algebraic manipulation of the aggregates received by
the sink, provided that there at least one alternative path.

C. Aggregate Generation and Data Reconstruction Algorithms

In previous sections, two algorithms to generate aggregates
were introduced and illustrated in simple scenarios. Algo-
rithms 1 and 2 describe how the aggregates can be generated
for arbitrarily large WSN.

Even for the simple cases presented before, it was obvious
that a rather high number of message exchanges could be
necessary. In fact, in both cases the worst-case number of
messages grew as a power of two with the number of siblings.

N0

N1 N2 N3

N4 N5

[1,4]+[5] [2]+[5,6]

N6 N7

[3,7]+[6]

Fig. 2. Example 1: Link Error Strategy



Algorithm 1 Node Error Case: Parent Generated Transmission
Lists

Ti ← Set of nodes reachable by offspring i
P← {} (Nodes that have been processed)
for {i = 1; i ≤ number of offsprings; i = i+ 1} do

Mi ← {}
for {j = 0; j < i; j = j + 1} do

Z ← Permutation of P taken j by j
for all Zl (elements of Z) do

Mi ← Mi

∪{
Ti \

∪
x∈Zl

Tx

}
end for
j ← j + 1

end for
P← P

∪
{i}

\\Remove duplicates and empty sets
for j = 1; j < 2i−1 − 1; j = j + 1 do

if Mi(j) = {} then
remove Mi(j)

else
for k = j + 1; k < 2i−1; k = k + 1 do

if Mi(k) =Mi(j) then
remove Mi(k)

end if
end for

end if
end for

end for

However, it should be noted that some of the entries of the
aggregation tables are empty sets, while others are repetitions.
An empty set occurs, for example, if all offsprings reached
by a given node can also be reached by at least one of its
siblings. And a repetition may happen if, for example, the
set of offspring that a node can reach minus the set of nodes
from a given sibling is equal to a similar set excluding another
siblings offspring. Therefore, the algorithms herein presented
also include an optimization section, in which the generated
aggregate set is pruned of duplicate and empty sets, thus
reducing the number and size of exchanged messages.

Eliminating redundancies (duplicates and empty sets) allows
to perform a significant reduction of messages and aggregates.
In sparse networks this optimization would not make much
difference, since it is more likely that each node would have
a rather distinct set of offspring2. However, as the network
density grows, there would be more nodes with rather similar
offspring tables, thereby the use of this improvement tend to
become significant. Nonetheless, it must be stressed that node
density control is out of the scope of this paper.

Algorithm 3 describes how the aggregates can be recovered
from the received messages in the case of node errors. For
each aggregate that a node manages (Qk), it must inspect the
aggregates sent by each of its children (Ri). Then, all the

2this is not a problem since under this circumstances each node would send
only one message with the aggregate of its own value and all its children, i.e.
sparse networks have less paths in its multi-path

Algorithm 2 Link Error Case: Parent Generated Transmission
Lists

Ti ← Set of nodes reachable by offspring i
Ni ← number of offsprings
for {i = 1; i ≤ N ; i = i+ 1} do

Mi ← {}
Z ← Arrangements of {0, 1} with repetition taken N−1
by N−1
for all Zl (elements of Z) do

Mi ← Mi

∪{
Ti

∩
Zl(x)=1 Tx

∩
Zl(x)=0 T x

}
end for

end for
\\Remove duplicates and empty sets
for j = 1; j < 2i−1 − 1; j = j + 1 do

if Mi(j) = {} then
remove Mi(j)

else
for k = j + 1; k < 2i−1; k = k + 1 do

if Mi(k) =Mi(j) then
remove Mi(k)

end if
end for

end if
end for

Algorithm 3 Node Error Case: Aggregate Computation From
Children Messages

Qk ← Set of aggregates that a node manages
Ri ← Set of aggregate values received from child i
RCi ← Binary vector. 1 if received message form child i,
0 otherwise
Uk ← Set of reconstruction path to kth aggregate
A← {}\\ Ak ← value of aggregate k
for {k = 1; k ≤ #[Qk]; k = k + 1} do

Ak ← self
u← Uk

for {i = 1; i ≤ #[Ri]; i = i+ 1} do
if not RCi then

for {j = i; j ≤ #[Uj ]; j = j + 1} do
remove instances of u related to node j

end for
end if
Ak ← Ak+Ri(argmaxu(i) = 1)

end for
end for

entries that failed are removed from u. Finally, the correct
aggregate value is obtained by taking the rightmost element
of u that has been received from each descendant. As can be
verified, the algorithm is not computationally intensive. The
operations carried out are relatively simple and the number
of iterations depends on the number of aggregates and on the
number of children, which are frequently relatively low values.

Algorithm 4 describes how the aggregates can be recovered



Algorithm 4 Link Error Case: Aggregate Computation From
Children Messages

Qk ← Set of aggregates that the node handles
Ri ← Set of aggregate values received from child i
RCi ← Binary vector. 1 if received message form child i,
0 otherwise
Uk ← Set of reconstruction path to kth aggregate
A← {}\\ Ak ← value of aggregate k
for {k = 1; k ≤ #[Qk]; k = k + 1} do

Ak ← self
E← {}\\set of excluded aggregates
for {i = 1; i ≤ #[Ri]; i = i+ 1} do

u← Uk \ Uk(RCi = 1)
u← u \ E
Ak ←aggr{Ak,Ri(u)}
E← E

∪
{u}

end for
end for

from the received messages in the case of link errors. The
process consists in taking the aggregates sent by each children
sequentially, and merge them if they have not been already
included in a previous children. To keep track of which values
have already been processed, it is used an exclusion list (E). In
each step this list is appended with the index of all values that
have been correctly received (RCi = 1) and not yet merged.

In terms of computational complexity, the algorithm is
similar to the previous one.

IV. EVALUATION

This section presents simulation results to assess the effec-
tiveness of the approaches proposed in this paper. The simula-
tions were carried out in the Matlabr software, with a standard
error model, in which the error probability is as function of
the distance Pr = Ped

−α, with α = 2, transmission power
was equal in all the nodes, and the probability of error as
(1− erf(Pr/No))/2.

In addition to the two algorithms presented in this paper,
this section also presents simulations of TAG and the DAG
approaches, described in section II. The TAG approach is the
simplest of all. It does not have any type of redundancy,
using only simple aggregation, thus it will be used as the
base line. The DAG approach has two level deep link error
correction capability, hence it will be used compare with link
error approach presented herein. To the best of the authors
knowledge, there is no approach that can be used to make a
direct comparison with the node error case.

The simulation was made with a network with 9 nodes
placed randomly with a uniform distribution in a square of
side 2.7m. The sink was chosen randomly, therefore, not being
necessarily in one of the edges of the network. Communication
parameters were tuned to ensure a communication range of
about 2m with an error probability of 0.1. 100 simulations
were done on the same network for each case, i.e. each
protocol and each error mode. All nodes were programmed
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to act as if they had read a 1 from their respective sensor
(including the sink) which allowed to have a global view into
the number of nodes that were successfully aggregated. Recall
that TAG is single path, hence in all case the nodes that were
aggregated, were done so once. Results are as follows:

From figure 3, the link error case behaved as expected with
approach tuned to link case having most of its occurrences
with the correct reception of all nodes. The DAG approach
also presented a reasonable/similar behavior. From figure 4,
the node error case presents a small discrepancy with the
expectation, i.e. the DAG approach behaved a little bit better
than our approach tuned to the error case, there are a few
reasons for this, 1)the DAG approach has a two level deep
link error correction capabilities and since the network was
small it could correct most of the errors (in fact, DAG in two
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level, i.e. sink plus two, is similar to our link scheme) and 2)the
experiences were done in a single network which potentially
means that a given protocol could have, out of serendipity,
have ended up in a network with many nodes in level 1. These
results call for simulations with more nodes, more levels and
also simulations with several different networks.

V. CONCLUSIONS

WSN present data transmission/reception reliability issues,
which can be dealt with by the use of multi-path routing.
Nonetheless, this solution introduces another problem, namely
aggregate reliability in the presence of duplicate-sensitive
summaries. This paper presented a mechanism that ensures
that the value of such aggregates will be as close as possible
to the actual value, namely by taking advantage of redundant
paths in the presence of errors and removing duplicates.

The mechanism is focused in the partition of the summaries
into several messages that are recomposed to form the best
possible message in their way to the sink. Two of such
algorithms were devised, one best suited for networks in which
the dominant failure mode is link failure and another in which
the dominant failure mode is node failure.

Both scenarios were simulated and compared to the standard
approach in the literature, having demonstrated a superior per-
formance in their respective failure mode scenarios. However,
there was also a reduction in the lifetime of the network.

Future work consists in providing formal proofs of the cor-
rectness of the proposed algorithms to generate the aggregates
and recover the data, as well as consider less pessimistic failure
modes, namely by controlling the number of nodes or links
that may fail simultaneously.
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