
Service Platform for Vehicular Networks

Pedro Cruz Sousa
pedro.cruz.sousa@ist.utl.pt

Instituto Superior Técnico, Taguspark
Lisboa, Portugal

Teresa Vasques Vazão
teresa.vazao@ist.utl.pt

Instituto Superior Técnico, Taguspark
Lisboa, Portugal

October 2012

Abstract

In this paper, we summarize a study on related Vehicular Ad-hoc Network (VANET) standards, some
past research projects and propose a solution for a service platform in a vehicular environment. We
present and analyse the measurements taken with our developed service supporting platform and
evaluate the feasibility of store and forward mechanisms and also different types of communication:
multi-hop, Vehicle-to-Infrastructure (V2I), Infrastructure-to-Vehicle (I2V) between two Road Side
Unitss (RSUs) and an On-Board Unit (OBU) (installed in a vehicle). Our study shows the practicability
and possibility of transmitting data in such an environment with little packet loss and latency.

Keywords: VANET, IEEE 802.11, Platform, Multi-hop communication, Store and forward,
V2I communication, Experimental performance

1. Introduction

The population of the world, as well as the demand
of vehicles for transportation, has been increasing
in the past decades. Such demand results in higher
congestion issues resulting in higher waiting times
and higher pollution, thus degrading the social well-
being. Such long waiting periods also wastes fuel
and with its pricing soaring and a potential threat
of its shortage, there is a clear need to improve road
traffic.

Road safety is yet another problem. Every year,
accidents cause 43.000 deaths in the USA, in Europe
the number of people killed every day is comparable
to a medium-haul plane crash (between 180 and 260
people) and in the Asia Pacific region 10 million
people are severely injured or killed on the roads
every year. Such death toll is major and grim.

In the past decade, numerous efforts that sought
to mitigate the aforementioned problems, produced
solutions like: information on traffic and hazardous
situations being broadcast via FM radio band; vari-
able message signs that warn drivers about chang-
ing conditions placed along freeways; electronic toll
systems that collect fees with reduced or almost no
disruption of traffic flow. These systems are cur-
rently being used in many countries, but are not
enough to avoid or minimize the presented prob-
lems.

Also, with the rapid development of Internet
there is need to integrate its applications which pro-
vide value-added services and extra comfort to trips

With the evolution of the automotive industry,
sensors and Global Positioning System (GPS), vehi-
cles are now equipped with various supporting tech-
nologies that can aid the driver. With the growth
of mobile computing and communications, such in-
formation can be shared between vehicles and indi-
vidual data can become a collective effort to sup-
port traffic in general. Also, with the cooperation
of other systems one can enable the deployment of
various types of applications and services, which can
include: road and weather status information, con-
gestion control, etc. Also, Internet applications, e-
commerce or even vehicle operation services (such
as vehicle inspection) can be included and further
developed.

It is with this in mind that we proposed a solu-
tion for a services and applications platform. This
platform provides means for their development in
an easy and seamless way. It also supports commu-
nication between vehicles and existing systems, as
well as facilities to easily obtain information of the
surrounding environment and for the deployment of
applications. One major contribution of the plat-
form is the fact that - as we will see - it does not use
a dual-stacked approach on the network and trans-
port layer like most of the existing solutions, but
rather makes use of a location protocol and runs it
over the typical TCP/IP stack used on the Internet.

This document is divided as follows: Section 2
discusses the Related Work, Section 3 and Section 4
denotes the Architecture and Implementation De-
tails, respectively, Section 5 shows the Results of

1



the performed tests and finally, we conclude and
make the final remarks on Section 6.

2. Related Work

In this section we will discuss some of the most rel-
evant standards, technologies and research projects
that contribute to the design of a Vehicular Ad-hoc
Network (VANET) architecture, as well as, the de-
sign of a platform to support communication within
such architecture.

2.1. Mobile standards and technologies

IEEE 802.11 has been around for quite awhile and
it is currently one of the most used wireless stan-
dard in the world. Depending on the needs - such
as QoS guarantees or bandwidth - variations on the
standard have been proposed, e.g., 802.11a/b/g/n.
Unfortunately, and as shown in [6, 11], these stan-
dards are not fitting for a VANET environment,
mainly because it was designed for low mobility net-
work - such as people walking with their wireless
devices. With this in mind, the ASTM and IEEE
adopted the Dedicated Short-Range Communica-
tions (DSRC), which is based on the IEEE 802.11a
PHY and MAC layer with a few modifications, in
order to maximize reliability and provide a more
robust and secure mean of transmission for an au-
tomotive environment [9]. DSRC is currently stan-
dardized as the IEEE802.11p protocol and it is used
within the Wireless Access in Vehicular Environ-
ments (WAVE) standard.

WAVE defines an architecture, communications
model, management structure, addresses security
needs and physical access. Its architecture is com-
posed of an OBU, RSU and a WAVE interface. The
WAVE operation is regulated by the IEEE 802.11p
and the IEEE 1609.x family of standards and it op-
erates below a few management protocols. For more
details, we refer the reader to [12].

Finally, the Communication Access for Land Mo-
bile (CALM) architecture is a set of standards
that support communication media and applica-
tion diversity and allows all communication scenar-
ios, such as Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication, multi-hop,
unicast and multicast. Its communication system
is composed of four sub-systems: roadside, vehi-
cle, central and personal, each one of them has
their own instances, each including an Intelligent
Transportation Systems (ITS) station performing
CALM-specific functions. Services and applications
run over a Communication Kernel - which is used to
exchange information between stations - such ker-
nel is composed of a CALM: Manager, Network-
ing and Media. The CALM Manager is the core of
each ITS station and it ensures that a given data

flow is matched to a given communication medium
according to a couple of parameters and configura-
tions. The CALM Networking layer is composed of
both IPv6 and ITS-specific protocol called CALM
FAST for non-IP communications and includes mo-
bility management protocols, like NEMO. Finally,
the CALM Media implements reliability parameters
indicating the quality of the link. Each CALM ra-
dio channel is virtualized and, as a result, this layer
can access its properties and set them on a packet-
by-packet basis. For further details, we refer the
reader to [2, 8]

2.2. Research Projects and Discussion

In the following section, we will give an overview
of the following research projects: Co-operative
Vehicle-Infrastructure Systems (CVIS), Network
on Wheels (NoW) and Safe Intelligent Mobility
(simTD). These were chosen among many others
(Safespot and COOPERS [1] or WiSafeCar [11], to
name a few) because they propose a solution that
intends to answer the same problem as ours - that
is to provide a suitable VANET platform.

CVIS aims to enable a flexible, harmonised and
open communication between its architecture com-
ponents - vehicles, roadside system, central sys-
tem - to improve existing services and develop
new ones [7]. Its involved parties use a multi-
homed approach for a continuous network connec-
tivity, involving infrared light, radio communication
based on WAVE, radio communication at frequen-
cies above 40GHz, 2G/3G cellular radio technology
and DSRC. All of these technologies are unified and
integrated by the CALM standard [2, 1]. CVIS con-
ducted several tests to analyse the performance and
handover behaviour of the involving technologies.
Such study [8] demonstrated that a vehicle travel-
ling towards a RSU and away (at 100km/h) could
achieve throughputs of 5Mb/s with packet sizes of
1KB and that handovers would not interfere with
the applications’ session.

NoW has two involving parties: vehicles equipped
with OBUs and fixed stations alongside the road
(RSU). Such design enables V2V and V2I com-
munication. NoW divides applications between
safety (e.g. avoid car crashes) and comfort (e.g.
web browsing). Each of these have different re-
quirements and needs and, so, it uses different ap-
proaches for both of them [3]. Its platform uses a
dual stack approach in which: safety-related appli-
cations use a novel network and transport proto-
cols that provide ad-hoc communication and multi-
hop - such as GeoBroadcast, GeoAnycast, GeoUni-
cast and Topologically-scoped Broadcast - among
OBUs and RSUs over a IEEE802.11p radio proto-
col; comfort-related applications use the traditional
TCP/IP protocol stack over IEEE802.11a/b/g pro-

2



tocols. Although each type of application has its
own stack, that does not mean that comfort-related
applications cannot use the stack of its counterpart.
This way, one can define basic systems and extend
already existing ones [3]. The results achieved by
NoW contributed to activities of standardization
bodies and the presented platform was used within
other working groups such as: Safespot, SEVE-
COM and Aktiv.

Finally, simTD aimed at the enhancement of
components from previous projects (like the NoW
project), as well as, the development of new ones.
Its system architecture is composed of a vehicle do-
main and an infrastructure domain, and thus, it
uses V2V and V2I communication. simTD vehi-
cle station architecture is composed of two com-
ponents: the Communication Control Unit (CCU)
and the Application Unit (AU). The CCU inte-
grates all communication modules and offers dif-
ferent abstraction layers for application access and
is connected with the AU using Ethernet, stan-
dard protocols and proprietary adaptations. It
uses IEEE802.11p, Universal Mobile Telecommuni-
cations System (UMTS) and GPS-based position-
ing. Based on NoW, it uses message queuing and
forwarding schemes and includes congestion control.
Above this layer, there is the transport layer and
the facilities layer. The latter one enables an ab-
straction of V2V and V2I communication for the
AU component [10].

As we have seen, the presented research projects
share a common approach on the VANET architec-
ture: the use of V2V and V2I communication. We
believe that both are needed for various reasons.
Particularly, the use of V2V is necessary in order
for time-critical applications to experience low de-
lays when transmitting important data.The use of
V2I is necessary in order to expand the transmis-
sion range of a given vehicle and to connect it to
other existing services and networks. As for the ap-
proach taken in the network layer, our viewpoint
diverges. The use of a dual stack network layer has
the following problems: uses too much resources as
it is more complex and thus less adequate for hard-
ware with low computational power and has more
processing and message header overhead. We pro-
pose the use of a proper geo-routing protocol and
location-based communication and a unique stack
instead of two, thus eliminating the aforementioned
issues. The same applies to the dual stack transport
layer approach.

3. Architecture

In the previous sections, we have discussed the ex-
isting problems of a VANET environment, as well
as, the different approaches and solutions taken
by either standardization groups and/or research

projects. In this section, we will explain our efforts
in building a supporting platform for applications
and services in a vehicular environment. But before
hand, we will describe, yet, another platform - the
Multi-Functional Platform - in which ours works
over, and then describe our Service Platform.

3.1. Multi-Functional Platform

The multi-functional platform [4] is a modular plat-
form that provides means for the development of
applications with great flexibility and reconfigura-
bility. Figure 1 denotes its architecture.

Figure 1: Multi-functional platform architecture
overview

It is based on a group of key components that
enable the development and configuration of appli-
cations. Such components are: interceptor frame-
work, handler factory and a configuration module.
The interceptor framework is based on a plug-in
scheme that offers means for traffic manipulation
by registering a set of rules (interceptors) in a rule
manager. Such rules are composed of several fil-
ters that describe when and which packets should
be intercepted. This scheme allows the implemen-
tation of features like security or packet manipula-
tion. The handler factory creates handlers which
are the main structure of the platform. The han-
dlers goal is to abstract applications from transport
details and traffic manipulations. Applications in-
stantiate these handlers and configure them based
on the type of transport they require. The plat-
form provides two transport schemes, a unreliable
and a reliable transport protocol based on a NACK
scheme. A local registry is used to store the unique
identifiers and the respective addresses of these han-
dlers, in order for local and network communication
to occur. Finally, the configuration module stores
information about parameters used by each han-
dler, such as how many messages the transport can

3



buffer.

3.2. Service Platform

When designing the platform, there were certain as-
pects that needed to be taken into account: (i) scal-
ability - the system should work either in a sparse
environment, as well as, in dense environments;
(ii) configuration - the system should be config-
urable and allow as much configuration options, as
possible; (iii) flexibility - applications should be
provided with as much mean of communication and
surrounding environment information as possible;
(iv) extensibility - the system should provide ways
to improve, extend and add features.

Taking into account the aforementioned require-
ments, we have designed a Distributed Architecture
with asynchronous communication, in which, each
component has a main focus. It is composed of four
layers: Facilities Layer, Transport/Network Layer
and Management. Figure 2 denotes our architec-
ture and its integration with the multi-functional
platform.

Figure 2: Service platform architecture overview

Further explaining, the Facilities Layer abstracts
applications from lower layers by providing an API
that facilitates messaging, neighbourhood informa-
tion - such as surrounding vehicles and their cor-
respondent speed, location, etc. - and real-time re-
ceival of nearby vehicles’ information and data. The
Transport/Network Layer is the core of the platform
as it provides the typical TCP-based communica-
tion, a reliable scheme using NACKs and an unre-
liable scheme (UDP-based) for data transmission.
It also provides means for broadcast, geocast and
unicast transmission using location-based commu-
nication, as well as information of the surrounding
environment. Finally, the Management is used to
store the platform configuration, such as the time
interval between the transmission of the vehicle’s
information (denoted as HELLO messages).

3.2.1 Management

The Management stores configuration parameters,
so that the Transport/Network Layer can configure
its components. Such parameters are as follows:
an alphanumeric unique ID ; number of hops which
tells how many hops-distance should the platform
store/send a given HELLO message; timings indi-
cating the interval between each HELLO message
and its removal; data aggregation which indicates
the algorithms that should be used to aggregate
the stored information; cache cleanup indicating the
interval between each cache cleanup (applications’
data); buffer size indicating the size of the local ap-
plications’ data buffer.

3.2.2 Transport/Network Layer

The Transport/Network Layer is the core of the
platform, and its architecture is shown in Figure 3.
It is composed of: a Network Manager, Table Man-
ager, Sender/Receiver Module and Protocols.

Figure 3: Transport/Network Layer components

As mentioned before, this architecture is mainly
a Distributed System with asynchronous communi-
cation, in which parts of the layer can be replaced
with similar components that can fulfil the task
at hand. Such replaceable parts are denoted with
dashed lines in Figure 3.

The main focus of the Network Manager is dis-
tributing all of the data between each of the com-
ponents. Its timers are meant to either send the
HELLO messages or to warn the Table Manager to
remove any old instances of other vehicles and/or
RSUs. The plugins are extensions to the platform
and allow to subscribe to any received data and al-
ter the times of each of the timers. Such subscrip-
tion is made possible because of the design of the
Sender/Receiver Module.

The Sender/Receiver Module is a simple compo-
nent that communicates with the Multi-Functional

4



Platform and it is meant to send internal or re-
ceive external data. Because we have designed a
Distributed System, we have developed a publish/-
subscribe scheme within this module, allowing its
components to receive data regarding HELLO, ap-
plication data or protocol data - with a few restric-
tions, like protocols not allowed to receive applica-
tion data and vice-versa.

The Table Manager is meant to store information
regarding its own vehicle and the surrounding envi-
ronment information at a hop-distance. Although
the data is discretized, it is this component that
makes use of the aggregation algorithms, so that it
can aggregate data of the surrounding entities when
sending data of its neighbours and thus allowing to
send as much information, as possible within one
message.

Finally, the Protocols are of two types: Rout-
ing Protocols and Location Protocols. They work
closely with the Network Manager in order to find
the location of a given vehicle/RSU or to route
a given message. Such protocols can be replaced
without altering the logic behind the Network Man-
ager and thus allowing for the development of
smarter and more efficient protocols.

3.2.3 Facilities Layer

The Facilities Layer abstracts applications from the
lower layers. It includes a mechanisms to register
with the platform, allow communication with other
entities, as well as, subscription to received HELLO
messages and requesting neighbours and their loca-
tions with the Table Manager.

4. Implementation Details

The implementation of the platform was made us-
ing the C programming language, alongside with
Extensible Markup Language (XML) for config-
uration parameters and JavaScript Object Nota-
tion (JSON)-based formats for external and internal
communication.

In order to understand how the Network Man-
ager and the Protocols work together, we will show
the implemented algorithms for the various types of
message transmission.

Algorithm 1 shows the procedures used for broad-
cast. As observed, it is very simple and it is based
on broadcasting a given message for a distance of
N hops. The number of hops is defined by the
application and this way we can avoid endless re-
broadcasts. Another mechanism used to avoid net-
work flooding and retransmitting the same message
is storing them in a local cache. In order to avoid
spending a great amount of memory in such storage,
hashing and bloom filters are used.

Algorithm 2 shows the procedure for geocast

Algorithm 1 Broadcast Algorithm

Require: code,message
1: if code > 0 then . Local generated message
2: broadcast message();
3: else . Remote generated message
4: if own message() OR in cache() then
5: return; . Discard message
6: else
7: message hops← message hops− 1;
8: broadcast message();
9: store message(); . Store message in

cache
10: end if
11: end if

transmission. The procedure is similar to broad-
cast in a way that uses the same mechanisms, but
with the following differences:

1. if the vehicle is not within the range of the
given location (in GPS coordinates) indicated
by the received message, then the message is
delivered to the routing protocol that will de-
cide to which node should the message be for-
warded;

2. if the vehicle is within range, then a broad-
cast procedure is started until the vehicles in
the given radius are warned. In order to avoid
flooding, the same cache procedure is used.

The fact that the decision of forwarding is trans-
ferred to the protocol, allows the detachment of the
Network Manager from routing decisions, and, since
the protocol can be changed, the platform can make
better decisions with the improvement of such pro-
tocol without altering the Network Manager proce-
dures.

Algorithm 2 Geocast Algorithm

Require: code,message
1: if code < 0 AND own message() then
2: return;
3: end if
4:

5: if in cache() then
6: return;
7: else
8: if vehicle within range() then
9: broadcast message();

10: else
11: send to routing protocol();
12: end if
13:

14: store message();
15: end if

5



Algorithm 3 shows the procedures used for uni-
cast. While the previous algorithms always use an
unreliable transmission channel, unicast can make
use of the three types of transport provided by the
Multi-Functional Platform. In all three cases, the
algorithm is the same, only the transmission chan-
nel is changed.

The algorithm works as follows:

1. if the location of the destination vehicle is
known, then the message is delivered to the
routing protocol to forward the message;

2. if the location of the destination vehicle is not
known, then the message is delivered to the
location protocol, which will attach a location
to the message, re-deliver it to the Network
Manager and then, the previous item is started.

Once again, the fact that the Network Manager
is detached from location decisions, allows for the
platform to be loaded with better location protocols
without altering the Network Manager procedures.

Algorithm 3 Unicast Algorithm

Require: code,message
1: if code > 0 then
2: found = check local table(); . Check if

destination is any of the neighbours
3: if found == true then
4: send to node(); . Forwards the message

to neighbour
5: else
6: if NOT message has location() then
7: send to location protocol();
8: else
9: send to routing protocol();

10: end if
11: end if
12: else
13: if NOT message for local vehicle() then
14: found = check local table();
15: if found == true then
16: send to node();
17: else
18: send to routing protocol();
19: end if
20: end if
21: end if

As for application development, we have defined
an Application Programming Interface (API) for
a key group of functionalities that allows the ab-
straction of communication, subscription with the
Sender Module for HELLO messages and querying
the Table Manager for any given neighbour.

5. Results

5.1. Equipment and software tools

To setup our test-bed, we used laptops running
Linux operating system (Ubuntu 11.04) equipped
with SMCWUSBS-N3 802.11b/g/n wireless pens
(configured to run IEEE802.11g). We installed our
platform within the laptops and developed a small
application (using our facilities API) which, based
on a configuration file, would either, send traffic
to the network using our platform or receive the
same transmitted traffic. Figure 4 shows our test-
bed montage.

(a) Test-bed environment

(b) Laptop on car

(c) Wireless pen montage on car

Figure 4: Hardware and test-bed environment

6



5.2. Description of the tests

Our tests focused mainly on three important char-
acteristics: I2V and V2I communication, store and
forward and multi-hop. To do so, we performed the
following test.

Observing Figure 5, the OBU (our vehicle) would
start in point A to gain velocity (50 km/h would be
our goal) and when reaching the RSU-B (at point B
- 57m from point A), the transmission would begin
from RSU-B to OBU. At this point, the OBU has
not received any HELLO messages from RSU-D (at
point D - 163m from point A) and so it does not
know the existence of the messages’ destination and
thus, it would store them. Upon reaching RSU-D’s
transmission range (roughly at point C - 83m from
point A) it would transmit the stored messages and
then transmit all received data from RSU-B at the
same rate that they are transmitted. The OBU
would then stop at point E, turn back to point A
and the test would be repeated. Point E was at
260m distance from point A.

We ran 4 different tests (shown in Table 1) with
UDP, each with 5 runs, and thus making 20 travels.

Figure 5: Test route

Table 1: Performed experiments

5.3. Results and analysis

The performance metrics used to evaluate the
connectivity between each involved party are:
(i) Packet Loss: percentage of packet loss due to
connectivity problems; (ii) Latency: the time that
took a given message to travel to its destination;
(iii) Jitter: the variation of the latency in the net-
work.

Figure 6 shows an average packet loss (with er-
ror bars representing the calculated trust interval
of 95%) for each test. We have discretized the total
packet loss into two other plots, in order to under-
stand where the most packets were lost. As we can
see, The RSU-B transmitted, without great prob-
lems, most of the packets to the OBU, while the
OBU and the RSU-D had the more losses. This
could be because of the used protocol (802.11g in-
stead of 802.11p) which is not meant for vehicular
usage. Using the proper standard, the packet loss
could decrease. Also, the surrounding environment
could also have its influence; the street had a slight
elevation which prevented the messages from be-
ing perfectly delivered, but also because the RSU-
D was near a house with metal surroundings which
could interfere with the transmission of the mes-
sages. Particularly, for 5120B/s case, in one of the
runs other vehicles were passing by, during the ex-
ecution of the test, thus increasing the packet loss
percentage (to 15.58%), and therefore ruining the
calculated average (which at the time was around
5%).

Figure 7 shows the behaviour of one of the per-
formed tests. The points 1 and 2, show the store
and forward behaviour of our platform; while in 1,
the OBU had no knowledge of the RSU-D’s exis-
tence, in 2, the OBU erased the RSU-D’s refer-
ence from its local table and missed out a couple of
HELLO messages. As such it stored the transmit-
ted messages until the reception of a new HELLO
message. The circled points show which packets

7



(a) Total Packet Loss

(b) From RSU-B to OBU Packet Loss

(c) From OBU to RSU-D Packet Loss

Figure 6: Packet Loss Total (a), from RSU-B to
OBU (b) and from OBU to RSU-D (c)

were lost during the execution of the test and at the
end of the plot, there were 3 undelivered messages
that were stored within the OBU, but could not be
transmitted because the OBU lost the reference of
the RSU-D.

Figure 7: Packet Loss Distribution over Time

All of the presented graphics allow to calculate
the desired performance metrics. Table 2 shows a
summary of the packet loss with the respective trust
intervals. From Figure 7 we can calculate the la-
tency and jitter, which are 1,17s and 30,4ms respec-
tively. It should be mentioned that the latency and
jitter values are calculated only during a fraction
of time that there was full connectivity between the
RSU-B, the OBU and the RSU-D - that is, between
5 seconds and 12 seconds in. From the aforemen-
tioned calculations and values, we compared the
packet losses with the study conducted by [5], anal-
ysed the other two metrics and verified that:

1. Packet Losses: Our packet losses are much
lower than the ones presented in the study
(ranging from 5% to 60%). This may be due
to the fact that, although they used their RSU
in a higher ground (which gives them a bet-
ter transmission range), they also blocked the
transmission with a bridge and thus increasing
the packet loss percentage;

2. Latency: Our latency is around 1,17s and
such values may be due to the fact that the
laptops’ clocks were not perfectly synchronized
and thus increasing the value of this metric.
So, we performed a ping test with a 64B data
and the presented values fell into more realis-
tic values; from the OBU to RSU-B we had
an average of 3,437ms (with a deviation of
1,263ms) and from the OBU to RSU-D we mea-
sured an average of 6,792ms (with a deviation

8



Table 2: Packet Loss summary

of 4,431ms). These values are much more ac-
ceptable and plausible than those previously
measured;

3. Jitter: From this metric, we can safely say
that the presented values are acceptable and
also, prove that the prior performance met-
ric discrepancy is not due to lack of platform
performance or bad measures, but to clock de-
synchronization.

6. Conclusions

In this study, we have presented the results and
evaluation of the performance of I2V and V2I com-
munication, alongside carry and forward mecha-
nisms and multi-hop based on the IEEE802.11g
technology. We have demonstrated that, it is pos-
sible and feasible to transmit data between two
RSUs and an OBU without much loss and delay.
Such experiments also proved the feasibility of ex-
tending the transmission range of an infrastructure
by using multi-hop and carry and forward mecha-
nisms. In the future and test-wise, we would like to
test the platform with more vehicles and/or infras-
tructures, but also evaluate the TCP performance
in a VANET environment. Implementation-wise,
we would like to greatly improve our platform by
either substituting the Multi-Functional Platform
for a complete implementation of communication
mechanisms or by improving its integration with
our platform. Also, and given the easiness in de-
veloping protocols with our API, we would like to
also refine the existing ones by taking into account
other crucial factors (such as distance).

Acknowledgements

This work is supported by FCT (INESC-ID mul-
tiannual funding) through the funds of Programa
PIDAC.

References

[1] J. Boussuge and C. Laurgeau. Comparative
synthesis of the 3 main European projects
dealing with Cooperative Systems (CVIS,
SAFESPOT and COOPERS) and description

of COOPERS Demonstration Site 4. Traffic,
pages 809–814, 2008.

[2] T. Ernst, V. Nebehaj, and R. Sorasen. CVIS :
CALM Proof of Concept Preliminary Results.
Media, (December):80–85, 2009.

[3] A. Festag, G. Noecker, M. Strassberger,
A. Lübke, and B. Bochow. NoW Network on
Wheels : Project Objectives , Technology and
Achievements. Transportation, (March):211–
216, 2008.

[4] F. Gonçalves. Multi-Functional Platform for
Indoor and Outdoor Monitoring. 2011.

[5] M. S. S. Jerbi, Moez. Characterizing Multi-
Hop Communication in Vehicular Networks.
2008.

[6] A. Khan, S. Sadhu, and M. Yeleswarapu. A
comparative analysis of DSRC and 802 . 11
over Vehicular Ad hoc Networks. Ad Hoc Net-
works.

[7] E. Koenders and J. Vreeswijk. Cooperative In-
frastructure. pages 721–726, 2008.

[8] M. E. G. Moe, V. Nebehaj, and T. Ernst. CVIS
Performance Test Results : Fast Handovers in
an 802 . 11p Network. Public Roads, 2010.

[9] L. Stibor, Y. Zang, and H.-J. Reumerman.
Neighborhood evaluation of vehicular ad-hoc
network using IEEE 802.11 p. Proceedings of
the 8th European Wireless, pages 1–5, 2007.

[10] H. Stübing, M. Bechler, D. Heussner, T. May,
I. Radush, R. Horst, and P. Vogel. sim TD : A
Car-to-X System Architecture for Field Opera-
tional Tests. IEEE Communications Magazine,
(May):148–154, 2010.

[11] T. Sukuvaara, P. Nurmi, M. Hippi, R. Autio,
D. Stepanova, P. Eloranta, L. Riihentupa, and
K. Kaubo. Wireless Traffic Safety Network for
Incident and Weather Information. Network,
pages 9–14, 2011.

[12] Y. Toor, P. Muhlethaler, A. Laouiti, and A. De
La Fortelle. Vehicle Ad-hoc Networks: Appli-
cations and related technical issues, volume 69.
May 2008.

9


