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Abstract—Network Virtualization is claimed to be a key
component of the Future Internet by enabling the coexistence of
heterogeneous (virtual) networks on the same physical infrastruc-
ture [1], providing the dynamic creation and support of different
networks with different paradigms and mechanisms. In order for
virtualization to be used in a network operator’s infrastructure,
its impact on the network traffic must be studied.

In this paper, we perform an analysis of the impact of network
virtualization on two types of traffic, TCP and UDP. To deploy
the virtual networks, the Network Virtualization System Suite is
used. This platform enables the creation of virtual networks on
top of a substrate network, isolating the traffic in the different
layers. The tests performed evaluate the effect that the increase
of virtual routers and data flows has on throughput and packet
delay. The effect of CPU load on throughput is also analyzed.

The results obtained using TCP demonstrate that the CPU
load has a more adverse effect on throughput than increasing the
number of virtual routers, with a loss of 25% in the first case
and 15% in latter case. The UDP tests revealed that increasing
virtual routers leads to an increase in packet delay variation.

Index Terms—Network Virtualization, Virtual Router, Virtual
Network, Network Performance.

I. INTRODUCTION

In the last few years the Internet has been walking steadily
towards the Networks of the Future. These necessary changes
still face a lot of resistance from legacy networks, which are
based on technologies designed decades ago. Current networks
lack the dynamism and the flexibility necessary for these
changes to take place. Cloud Computing can be seen as an
example of a paradigm being hindered by current network
infrastructures. For example, a company moving its Informa-
tion Technology (IT) resources to the cloud will probably use
Virtual Private Networks (VPNs) based solutions to connect
virtual infrastructures with their premises. VPNs were not
designed to adapt to the users demand, a characteristic that
is very popular with Cloud Computing [2].

Network virtualization can play an important role in the
development of the Networks of the Future. It brings great
improvements in terms of flexibility, isolation and dynamism,
which will foster the development of new architectures and
technologies while improving current network based services
[3].

Currently there are various alternatives to deploy virtual
networks, with one of them being the Network Virtualiza-
tion System Suite (NVSS) [4] developed under the 4WARD

project [5]. The NVSS is a platform for the creation, discovery,
monitoring and management of virtual networks; it will be the
one used in the tests performed in this paper. Although some
tests have proven the functional capabilities of the platform,
see [6] and [7], a data quantitative analysis is still missing.
Several web based services like video streaming or voice calls
have minimum requirements, in terms of throughput or jitter,
that need to be met for these services to be deployed. This
paper will cover performance parameters like throughput and
packet delay that have a direct impact on the provisioning of
services.

To perform these tests two types of traffic will be generated,
Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). The results obtained using TCP demonstrate
that the Central Processing Unit (CPU) load has a more
adverse effect on throughput than increasing the number of
virtual routers, with a loss of 25% in the first case and 15%
in latter case. The UDP tests revealed that increasing virtual
routers leads to an increase in packet delay variation.

The rest of the paper is organized as in the following.
After summarizing the related work in section II, section III
describes the architecture of the NVSS platform and presents
the existing functionalities. Section IV describes the testbed
used and evaluates the influence on the packet delay variance
with the number of virtual routers and network flows. Sec-
tion V analyses the virtual router throughput and investigates
the influence of the CPU load on the overall throughput, and
section VI concludes the paper and describes the future work.

II. RELATED WORK

Future Internet research projects such as the PlanetLab [8]
or the 4WARD [5] have investigated and promoted the use of
network virtualization as a way to evaluate and deploy, in the
latter, future Internet architectures.

With that in mind, Egi et. al [9] evaluated the use of Xen
hypervisor [10] as a way to implement virtual routers. The
performance of virtual routers on commodity hardware has
been assessed in [11] and [12], where the virtual routers
throughput is similar to the one of underlying hardware when
using control plane from forwarding plane separation.

A platform for high performance and flexible virtual routers
on commodity hardware based on multiple input queues has
been proposed in [13]. The virtual router migration feature



has proposed by Wang et. al [14] as a primitive of network
management operations. To reduce the Virtual Router (VR)
downtime due to the migration process, Wang et. al [15]
proposed the separation of the forwarding plane from the
control plane.

Despite the existing performance research results provided
in [11] and [12] on virtual routers running on commodity
hardware, we argue that a deeper analysis on either the traffic
types or the influence on the CPU load is still not tackled. We
also argue that the impact on the packet delay variance with
the number of virtual routers and without using control and
forwarding plane separation is not assessed.

In the following section we present and describe the NVSS
architecture and its built-in functionalities to handle virtual
networks.

III. NETWORK VIRTUALIZATION ARCHITECTURE

The goal of the developed virtualization platform is to
provide the operators with a network virtualization solution
that is easy to use, versatile, and efficient in virtual network
discovery. The resulting platform provides the necessary func-
tionalities to discover, monitor, deploy and manage virtual
networks running on top of a substrate network. It is designed
to run on Fedora Core 8 and Debian Lenny Linux distri-
butions with the Xen kernel. Figure 1 presents the network
virtualization considered approach, which takes into account
a heterogenous physical network and builds on top of it virtual
networks with different types of topologies.

A. Network Virtualization System Suite Architecture

The NVSS is composed of 3 software modules: the Agent
module, the Manager module and the Control Centre module;
their hierarchical decomposition is demonstrated in Fig. 2. The
Agent module is designed to work within the domain of a Xen
virtualization environment, running on every substrate node,
in order to perform network enforcements and periodically

Figure 1. A Network Virtualization Approach

Figure 2. Network Virtualization System Suite - Architecture

gather data. The Agents, besides interacting with each other
to share network topology information, also receive and send
requests to the Manager, which is a centralized entity in
charge of aggregating all Agents’ knowledge and sending
them commands. The Manager is also devoted to map new
Virtual Network (VN) requests and to communicate with the
Control Centre, which is the user’s front-end, and provides
him with graphical and simple to use virtual network creation,
management, and monitoring functionalities.

B. Virtual Network Mapping and Creation

The Control Center module provides the user with means
to create and embed a new VN. By selecting and placing
resources on the platform Graphical User Interface (GUI) and
by connecting them with links, a VN can be specified. The user
may specify the resources’ CPU capabilities, Random Access
Memory (RAM) amount, location, number of interfaces and
also perform network addressing configurations. The final step
in creating a new virtual network is to commit it to the
Manager, which will then map it in the physical infrastructure.
The embedding problem, that includes both nodes and links
mapping, is a complex one and requires a trade-off between
computation time and embedding optimization. In order to
lower the computational requirements, a heuristic mapping
algorithm was developed, which aims to embed VNs taking
into consideration both the substrate links’ and nodes’ loads.

C. Substrate and Virtual Network Monitoring

Dynamic resource monitoring is fundamental to provide
an accurate view of the virtual and physical networks, and
to quickly react to failures or configuration problems. The
implemented monitoring functions periodically update the
resources’ information; therefore it is possible to quickly
identify diverse situations, such as failures and high resource
usage. Every Agent periodically checks its local resources’
configuration and status, and reports back to the Manager if
any change occurs. Several parameters are monitored: CPU
load, RAM, Hard Disk Drive (HDD) usage, interface and link



status, interface bridge attachment and configuration, number
of running virtual machines and their state.

D. Virtual Network Management

Just like the previously described monitoring ability, the
management feature is also a crucial one; to that end, some
functionalities are provided. It is possible to change the
resource’s state, i.e.: reboot, shutdown, suspend or power up;
to change the assigned RAM memory in runtime; and to delete
either a single resource or a complete VN, which greatly
simplifies the administrator work.

IV. EVALUATION - PACKET DELAY

In this section we start with the description of the testbed
considered to evaluate several packet delay statistics as func-
tions of the number of virtual routers and the number of
network flows. The statistics considered are average packet
delay, packet delay variance and packet delay variation.

A. Testbed Configuration

In order to analyze the impact of network virtualization
on the packets’ delay times, several aspects must be taken in
consideration. For example, it must be guaranteed separation
between the several flows of traffic, regardless of whether they
traverse the same virtual router or not. Another important
consideration is to guarantee that all traffic traversing the
virtual routers is captured and limited to the one injected into
the network. With this in mind, a testbed was designed, which
is presented in this section.

The testbed used is composed of six computers using the
configuration shown in figure 3. Three computers are used to
generate the traffic flows, two computers are used to receive
them, and one computer is used to deploy the virtual routers.
The 5 computers used to generate and receive the traffic flows
provided us with 14 ethernet interfaces, thus allowing for a
maximum of 7 flows at a time, since we want to observe
independent flows which don’t start nor end at the same
interfaces. Since there could be no more than 7 flows, the
number of VRs was also limited to a maximum of 7. The
computer, Eddie, where the virtual routers are instantiated,
is an Intel Xeon E3220 with four cores (2.4GHz each) and
6GB of system memory. This computer runs Xen Hypervisor
version 3.1. The machines responsible for traffic generation
are connected to a switch which sends all incoming traffic to
one port. This port is connected to a hub ensuring that the
same packets which enter the virtual routers are captured by
another machine using the Wireshark software [16]. On the
right side of the virtual routers, a symmetric configuration is
used.

To ensure independency between the different virtual links,
Virtual Local Area Network (VLAN) tagging was used; VLAN
tagging is only applied between the switches. In the physical
machine Eddie, where the VRs reside, each virtual interface
is associated with a specific bridge and VLAN tag.

Iperf [17] sessions are used to generate traffic flows with
a packet size of 1300 bytes at a bit rate of 1Mbps. The data

Figure 3. Experimental Apparatus

obtained in each test derive from 10 runs of 30s of traffic.
To have an end2end view of the packet transmission, the
Wireshark software was used in four different points along
the path:

1) In the machine generating the flow;
2) In the hub before Eddie;
3) In the hub after Eddie;
4) And in the machine receiving the flow.

The Wireshark application uses the machine’s system time to
get the capture time of each packet.

The results obtained for packet delay are based on the time
it takes for packets to go from hub1 to hub2, so as to evaluate
the delay introduced by the virtual routers in Eddie. The
timestamps of the packets were collected using the Wireshark
software, and the data inside these packets was used to match
the timestamps at the 2 hubs. This way, it was possible to
obtain the individual delays for each packet in each flow.

To determine the packet delay variation, it was used the
method defined in [18]. This method defines packet delay vari-
ation as the difference in delay times between two consecutive
packets.

B. Results

In figures 4 and 5 we can observe the average packet delay
for a set of 15 runs with confidence intervals of 90%. Figure 4
shows the effect of changing the number of active VRs while
keeping constant the number of flows per VR; figure 5 shows
the effect of increasing the flows in a single VR.

It is visible that the average packet delay is very stable
regardless of the number of active VRs and flows per VR.
The very small confidence intervals corroborate this stability
among runs. This is likely due to the low amount of extra load
imposed on the system by the extra traffic and extra VRs,
which might lead to an average delay change that is small
compared to the total average delay.

In figures 6 and 7 we can observe the variance of the packet
delay for a set of 15 runs with confidence intervals of 90%.
Figure 6 shows the effect of changing the number of active
VRs while keeping constant the number of flows per VR, while
figure 7 shows the effect of increasing the flows in a single
VR.
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Figure 4. Average packet delay for a single flow per active VR and different
numbers of VRs
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Figure 5. Average packet delay for a single active VR with different numbers
of flows

We can see that the general trend is that the variance of
the packet delay, as well as the confidence intervals, increase
with the number of active VRs and flows per VR, with a
few exceptions. This means that, as the number of active VR
and flows per VR grow, the delays become more statistically
unstable on 2nd order time measures: while the average packet
delay remains constant, the variance increases on average but
becomes more unstable between runs.

In figures 8 and 9, it is possible to observe the behavior of
the average packet delay, as well as the packet variance, when
different combinations of VRs and flows per VR are activated
up to a combined maximum of 7 packet flows.

For the average packet delay in Figure 8, we can see that it
is similar regardless of the number of VRs and flows per VR,
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Figure 6. Packet delay variance for a single flow per active router for different
numbers of VRs
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Figure 7. Packet delay variance for a single active VR with different numbers
of flows

always close to 1.15 ms.
When we observe the variance of the delays of the packets

in Figure 9, we can see very clearly that the larger the
number of active VRs and the larger the number of flows
per VR, the larger is the variance of the packet delay. For the
same cases analyzed in Figures 8 and 9, we also studied the
throughtput behavior. For all these cases we obtained values
of throughput always averaging very close to 100% with very
small confidence intervals. This is expectable due to the small
bandwidth used by each flow (1Mbps) which, even when
considering the maximum combination of 7 flows, is still too
low to be affected.

In figure 10 it is represented the packet delay variation while
varying the number of active routers.

The packet delay variation is similar for 1 and 2 VRs; for



Figure 8. Average packet delay for a maximum total of 7 flows

Figure 9. Packet delay variance for a maximum total of 7 flows

Figure 10. Packet Delay Variation while varying the number of VRs

Figure 11. Experimental Apparatus - Throughput

2 or more VRs, it increases almost linearly with the number
of VRs.

V. EVALUATION - THROUGHPUT

In this section we start with the description of the testbed
considered to evaluate the network throughput, and further-
more, we assess and analyze the network throughput as a
function of the number of virtual routers, the number of
network flows, and also as a function of the CPU load.

A. Testbed Configuration

The purpose of these tests is to analyze the behavior of the
throughput with a different number of virtual routers and CPU
load. The changes made to the configuration of the testbed are
due to the fact that the ports on the hubs used in the previous
setup are limited to 10 Mbps.

In this configuration, only three machines were used (see
figure 11: Eddie as a transmitter; Susan as a receiver; and
Bree where the VRs were mounted. Bree has an Intel Xeon
E3110 with two CPU cores (3.0 GHz each) and 6GB of system
memory.

The three nodes are directly connected through Ethernet
cables with a bandwidth of 1000Mbps. To test the throughput
the software Iperf was used, which will allow the measuring
of the transmission rate between Eddie and Susan. In all the
tests, 15 runs of 30 seconds of traffic were analyzed. The
traffic is composed of TCP packets with a fixed size of 16
KB. To separate the different flows of traffic, VLAN tagging
was used.

B. Results - Throughput

In order to establish a reference value, the throughput
between Eddie and Susan was first measured without the use
of VRs. This reference serves as a base comparison for the
upcoming results. The throughput registered was constant and
with a value of 940 Mbps.

In the first part of these tests, the throughput was measured
while varying the number of active VRs; the number of VRs
ranges from 2 to 7. The obtained results can be seen in figure
12 where the throughput shown is the combined value of all
the flows. Assuming the reference value corresponds to 100%
of the available throughput, the losses range from 13,5% to
4,9% (with 7 VRs and 4 VRs). Also, during these tests it was
possible to observe that the hypervisor manages to make a
fair distribution of resources. Looking at the flows’ throughput
individually, the values registered showed a small dispersion.



Figure 12. Throughput behavior while varying the number of VR

Figure 13. Throughput behavior while varying CPU load

To assess the influence of the CPU load in the VRs
performance, a program called Lookbusy [19] was used. This
software uses infinite loops in multiple threads to force the
CPU load to a predetermined value. During this test only 1
VR was active.

The results can be seen in figure 13 with the confidence in-
tervals of 90%. The results show that the amount of CPU load
significantly affects the throughput. The throughput decreases
steadily for CPU loads below 30%, while for higher loads
the throughput seems to stabilize around 700 Mbps. Before
making these tests, a trial run was made in which no virtual
routers were used. During this trial run, the throughput seemed
independent from the CPU load.

VI. CONCLUSION & FUTURE WORK

The main goal behind these tests was to establish a profile
in terms of performance of network virtualization using the
NVSS. The tests using TCP traffic allowed the retrieval of
the throughput behavior while varying the number of virtual
routers and CPU load. The tests with UDP traffic permitted an
assessment of the behavior of packet delay in terms of average
value and variance, as well as its variation, for different
amounts of active routers and flows per router.

The results obtained for the throughput show that network
virtualization has a negative impact on performance, as ex-

pected. The best results were obtained with 4 VRs, with the
throughput presenting a loss of around 5%. Up to 4 VRs,
the throughput increases with the number of active routers,
which is probably due to a more efficient use of the bandwidth.
Beyond this point, increasing the number of VRs decreases the
global throughput. It should also be noted that having 7 VRs
on the same machine never led the CPU load to exceed the
10% threshold, although it got close to this value. Looking
at the results of the throughput behavior in terms of CPU
load, at 10% of this load the throughput stays near 800Mbps.
These two facts together lead us to believe that the throughput
decrease after 4 VRs must be due to the increase of CPU load.

The measurements on the average packet delay and packet
delay variance showed that, for different combinations on
the number of VRs and flows per router, the average delay
is mostly constant while the delay variance increases with
both the number of VRs and the number of flows. We can
also see that the confidence intervals for the variance also
increase in the same way, which shows an increasing degree of
instability for 2nd order parameters of the delay probabilistic
distribution. Apart from the results for 1 VR, the packet delay
variation increases almost linearly with the increase of VRs.
In qualitative terms, the packet delay variation is low, even
for the worst case where it reaches 0,4% of the packet delay.
Also, looking at these results from an absolute value point
of view, values in the order of microseconds indicate a good
performance. Several types of data services which operate in
real time, e.g. video or VoIP calls, can support a significant
amount of average delay but need this delay to be stable.
Therefore, one must make sure that the packet delay variance
falls within certain limits. With this analysis, we analyzed how
virtualization impacts this important aspect for real-time data
services.

Looking at the combined results of the TCP and UDP
traffic, the obvious conclusion is that up to 4 VRs network
virtualization has minimum impact on throughput. Average
packet delay is also minimally impacted, even though its
variance and variation increase as the number of VRs and
flows increases. Also, it seems that the CPU load should be
the main factor behind the deterioration of the throughput
performance. Even though using newer and better hardware
should improve greatly the results obtained, given the age of
the hardware used, the trend should remain that the more flows
and VRs, the larger is the packet delay variance and jitter and
the lower is the throughput.

There are several paths which can be trailed to proceed
from this work. It would be important to study how the use
of other virtualization technologies and hardware impacts the
throughtput and packet delay statistics. On the other hand, it
would also be relevant to have a direct comparison between the
performances of virtualized and non-virtualized networks for
the same kind of services. Experimenting with a larger number
of VRs and network flows would allow us to have a more
complete and detailed view of the impacts of virtualization; it
would also allow us to relate the CPU load with the number
of VRs, since for the number of VRs considered in this paper



the CPU load was always low.
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