Towards a Cloud Service Broker for the Meta-Cloud

Carlos Gongalves™*, David Cunha'?, Pedro Nevesf, Pedro Sousa*, Jodo Paulo Barraca*, Diogo Gomes*
*Instituto de Telecomunicac¢des, University of Aveiro, 3810-193 Aveiro, Portugal
{cgoncalves,jpbarraca,dgomes } @av.it.pt
TPortugal Telecom Inovagdo, SA, 3810-106 Aveiro, Portugal
{david-g-cunha,pedro-m-neves } @ptinovacao.pt
Centro ALGORITMI / Department of Informatics, University of Minho, 4710-057 Braga, Portugal
pns@di.uminho.pt

Abstract—Cloud Computing provides computing resources,
middleware and (web-based) software on an on-demand basis.
This model helps customers saving costs and allows access to the
latest technology. With the exponential growth of IT companies
offering cloud services, deploying applications to the cloud has
become a complex task to engage. Almost each and every provider
has its own terminology, providers do not share the same (or even
similar) API, and costs of operation greatly diverge according to
provider, region or availability.

This paper propounds a Cloud Service Broker (CSB), and
describes an early prototype, where users are, intelligently and
autonomously, aid to deploy, manage, monitor and migrate their
applications in a cloud of clouds. A single API is required to
orchestrate the whole process in tandem with two truly decoupled
managers: a Platform as a Service Manager (PaaS Manager) and
an Infrastructure as Service Manager (Iaas Manager). Users also
interact with the CSB through a Web portal and a command-line
interface.

Index Terms—Cloud Service Broker, IaaS, PaaS, Cloud Inter-
operability, SOA

I. INTRODUCTION

Cloud Computing is an emerging technology used to deliver
on-demand services over the Internet. It is undoubtedly affect-
ing the way business is conducted and is empowering a new
generation of products and services. Cloud Computing can be
summarized into three keywords: elasticity, on-demand, and
(autonomously) fully-managed [1]]. These three characteristics
massively benefit organizations by reducing both CAPEX and
OPEX while enabling them to channel their efforts to the
strategic business sector [2].

Business models for cloud computing present the resulting
system according to three major layers: Infrastructure as
a Service (IaaS), Platform as a Service (PaaS) and Soft-
ware as a Service (SaaS) [3[]. Several companies such as
Amazon, RackSpace, Google, and Microsoft, expose their
cloud solutions publicly as business-to-client and business-to-
business models. These companies provide on-demand cloud
services through a diverse set of business models and preposi-
tions. Availability, continuity, API support, location, charging
scheme and price, as well as technical characteristics such
as computational capabilities, storage and processing memory,
are some of the parameters of the resulting business offers.

Consider the following short list of presently available
proprietary and open source PaaS software platformas avail-

able for public consumption. Herokt[] is a well known cloud
application provider supporting a variety of runtime languages
including the Java, Ruby, Python and Node.js frameworks as
add-ons. Microsoft’s Windows Azureis a 99% Service-Level
Agreement (SLA) cloud platform proportioning users with
extended services like Content Delivery Network (CDN), ap-
plication load balancing, and service bus. On the open source
side of PaaS platforms, efflorescent projects has come to light
recently with a successful prospective enabling cloud provider
enterprises to embrace such projects and contribute back to a
better product, as well as enabling users to run their own PaaS
instance on a private cloud. Cloud FoundryE] is a open source
platform project initiated by VMWare Inc. Cloud Foundry
strives to be multi-language, multi-framework, multi-service,
and multi-cloud. It is also in its goals to be horizontally
scalable and self healing with no single point of failures, and
fail fast, following basic patterns—event-driven, asynchronous,
and non-blocking [4]]. All these solutions are limited because
cross-cloud management functionalities are lacking [5], and
they are focused in interoperation, forgetting about many self-
healing and business continuity aspects. Cloud consumers are
therefore faced with the problem of choosing the best provider,
considering the factors identified as critical for each owned
system and individual applications.

The framework we propose addresses the aforementioned
issue by aiming to develop a Cloud Service Broker (CSB)
which eases crucial lifecycle application stages (deployment,
management, and monitoring) from developers orchestrating
the whole process in tandem with a PaaS Manager and an
TaaS Manager. To achieve such goal, the CSB should be
aware of user application requirements, be aware of available
cloud offers, and transparently deploy to the best rated cloud
provider based on given premises, being either and ideally a
PaaS or if premises are not fulfilled, falling back to an IaaS
solution in which a PaaS framework is setup on demand.
Through the proposed CSB, end-user developers will have
access to a feature-complete Web portal where they can auto-
deploy, manage and monitor their appliances. Ultimately, the
CSB allows the integration of intelligent mechanisms towards

Thttp://www.heroku.com/
Zhttp://www.windowsazure.com
3http://www.cloudfoundry.com/

the live migration of SaaS between PaaS and live migration of
PaaS between IaaS, in such a way that it will self heal from
a misbehaving provider or in response to localized service
demand, or cost cutting by switching-over to a less expensive
provider.

The remainder of this paper is structured as follows. Section
[briefly overviews the state of the art in the cloud computing
area focusing on cloud mediators, decision making helpers and
cloud API standards. Section [llI| proposes a novel framework
solution for the needs identified, which by taking a bottom-
up approach describes two new decoupled products, the PaaS
Manager and TaaS Manager. Finally, Section [[V] concludes the
work presented.

II. RELATED WORK

Industry and academic related work have been published
throughout the last two years actively. Work includes, but
not restricted to, decision making engines for cloud services,
unified multi cloud management systems and cloud brokering.
The majority are focused on IT infrastructure.

The work in [6] discusses a methodology for a multi-criteria
cloud service selection. Cloudle [7], another multi-criteria en-
gine, uses cloud ontologies for [aaS and PaaS, amongst others
“as a Service” cloud offerings. On multi cloud manageability
[8]] proposes a platform that mediates between users and IaaS
resources and hence reducing workload for IT operators by
only requiring a single sign-on in one unified portal. A proven
implementation of this kind of cloud management concept is
Red Hat’s sponsored Aeolus projecﬂ

An interesting reading is [9]]. It identifies and compares
common use cases on different [aaS and PaaS cloud platforms.
Interfaces, documentation, ease of use and time taken to
learn, and number of steps required to accomplish a task are
measured.

Because hardly any PaaS offering will ever satisfy every
application or system requirement, a new approach needs to
be considered to fill in the gap. An approach which really
integrates different cloud architectures, providing enhanced
management capabilities. A first approach is to interoperate
services across different providers creating a whole new and
tailor-oriented PaaS per tenant. However, in order to consider a
broader approach, we can not safeguard an absolute coverage
of all functional prerequisites. As such an extended approach
has to be contemplated to tackle the downside of the former
strategy. The proposed approach presented in this paper re-
quires the use of less abstract interfaces to the cloud, namely
through the use of IaaS solutions, and perform some automatic
and transparent work from the point of view of the cloud
consumers. The objective is to meet the requirements specified
by users from the set of available cloud providers, which could
not be accomplished by existing single PaaS offerings.

Also considerable efforts on the cloud API standardization
have been conducted by industry organizations. They are
committed to unify incompatible APIs from various cloud

“http://aeolusproject.org

laaS
Manager

v v v

Amazon EC2 OpenStack -

Fig. 1: Architecture overview

providers as a single one. Examples of well-defined [aaS APIs
are Distributed Management Task Force (DMTF)’s Cloud
Infrastructure Management Interface (CIMIﬂ and Open Cloud
Computing Interface (OCCIﬂ from Open Grid Forum (OGF).
These two standards are already being used in a considerable
number of projects such as on OpenStack, CloudStack, and
OpenNebula. The freshly unveiled Cloud Application Manage-
ment for Platforms (CAMPﬂ a joint effort by big companies
including Oracle, Red Hat, Rackspace and others, strives to
bridge the same gap as CIMI and OCCI do though on the PaaS
layer of the cloud stack. PaaS management API’s CAMP goal
is to provide a common ground across multi-cloud solutions.
Consumers interact in a REST-based approach, exchanging
JSON encoded data for the model resources. Interoperability
between platform clouds is made easier.

III. PROPOSED ARCHITECTURE

The hereby presented CSB framework, and depicted in
Figure[T] consists on four layers. The PaaS and IaaS managers
support multi-provider and multi-cloud environments using
each a single API, orchestrated by the intelligent CSB. Users
have access to a Web portal and command-line interfaces
where they can perform arbitrated operations on resources.

Combining all service oriented components of multiple
cloud systems into one single piece of software, provides
an efficient and practical platform. This approach is suitable
not only for helping users decide which PaaS provider better
fits current or future requirements in terms of deployment,
execution and monitoring, but also for the case that no single
provider fulfills these requirements. Intelligent handling of
application specification enables fallback to different PaaS
providers or smooth deployment to be built directly in to a
IaaS cloud solution.

Shttp://dmtf.org/standards/cloud
Shttp://occi-wg.org
http://cloudspecs.org/CAMP/

A. Platform as a Service Manager

The Platform as a Service Manager (PaaSManager), de-
tailed in this section, is a framework which aggregates sev-
eral PaaS public offerings based on shared similarities. The
PaaSManager is intended to provide fundamental features for
developers, such as, create, manage, monitor and acquiring in-
formation regarding applications and databases. Furthermore,
the portability of applications between vendors is a foremost
purpose of this architecture. For the development process of
such approach, some PaaS offerings were selected to belong
to an interoperable ecosystem.

Besides well-known vendors like Amazon, Google and
Windows, there are several platforms which offer attractive
solutions for developers. The selected platforms, CloudBees,
CloudFoundry, IronFoundry and Heroku, were broadly studied
as well as their native APIs and management processes.
As result, 20 operations were specified based on similarities
shared by the platforms from the ecosystem. Some additional
developments had to be performed in order to provide a
complete transparency for developers, like supporting Git as
deployment tool for every PaaS. Figure 2| resumes some of the
fundamental operations supported by the PaaSManager.

CREATED

stopApp

createApp

deployApp RUNNING

startApp

DEPLOYED

deleteApp STOPPED

star{App
scaleApp

getAppStatistic

v

MONITORED

Fig. 2: Application Lifecycle

SCALED

Besides these operations, the PaaSManager allows to restart,
update, migrate applications and create and delete databases.
As aforementioned, the portability of applications is also a
main goal of this solution. The decision of migrating software
to another provider may be based on the demand for better
performance or more suitable business models. However, the
PaaSManager approach does not intend to define any standard
model or support interfaces to migrate, for instance, Java to
.NET. Consequently, it requires a prior analysis to check if
the new platform will be able to run the application properly.
In terms of monitoring, each vendor provides distinct metrics
and paradigms. CloudBees and Heroku have partnered with
NewRelic for supplying real-time statistics. On the other hand,
CloudFoundry and IronFoundry have a specific operation in
their native APIs.

In the next section, the PaaSManager architecture will be
presented as also all the modules that were designed for
supporting the discussed features.

1) PaaSManager Architecture: The PaaSManager archi-
tecture is entirely modular so each vendor API has been
implemented by different entities that abstract the background
processes through a RESTFul interface. Figure |3| presents the
framework architecture and respective operational modules.

2) PaaSManager API: The PaaSManager API is REST
compliant supporting all the operations aforementioned in a
lightweight and web oriented approach. This interface can be
easily implemented by any HTTP client, such as, web, desktop
or cURL. To be authenticated, the client application only needs
to send an api-key through all the requests to the API. On the
other side, the authentication with vendors is done through a
unique account enabling the PaaSManager to act as a mediator
between users and PaaS providers. Therefore the developer
does not need to register in each vendor for having full access
to their services.

3) Management Resources: The Management Resources
presented in Figure [3] is a decision module responsible to
interact with each PaaS adapter for management tasks (create,
deploy, start, stop, etc.). Four adapters were defined, each one
for each supported platform: CloudBees Mgmt, CloudFoundry
Mgmt, IronFoundry Mgmt and Heroku Mgmt. These adapters
implements the operations related to management features and
exposed by the vendors APIs. Then, they process the acquired
information returning unified responses in JSON or XML
representations. Other key elements from the architecture are
integrated with the Management Resources and the PaaS
adapters. For instance, a central database keeps state of created
applications storing the application framework identifier and
the vendor name where the application is hosted. Also a Git
server maintains all the applications source code repositories
that are crucial for some PaaSManager operations, such as,
create, deploy, update and migrate applications. Maintaining
Git repositories may question the scalability of this architec-
ture, however, to keep the system clean and efficient, the dele-
tion of applications will enforce the removal of unnecessary
repositories.

The migration of applications is becoming crucial in de-
velopers’ point-of-view. In the scope of this work, the PaaS-
Manager performs a prior analysis whether the platform to
where the application will be migrated, supports the required
technologies for the application to run properly. Figure {4
resumes the migration process and all the performed steps.
Firstly, the request done to the PaaSManager API is routed
to the Management Resources module, responsible for the
migration operation. The database is then queried in order to
return the PaaS identification where the application is hosted,
as also the supported framework, e.g, Django, Sinatra. The
Management Resources calls the specific PaaS adapter which
in turn analyzes if the new provider supports the fundamental
dependencies. In the case of correlation, the application code
is deployed in the new selected PaaS through the required op-
erations processes (create and deploy). Finally, the application
deployed in the previous platform is removed and the state
information in the database is updated.

Currently, the PaaSManager does not support the migration

PaaS Manager API

Management
Resources

Information
Resources

Info PaaS Adapters

NewRelic

App#1

NewRelic

App#1

NewRelic

App#2

Fig. 3: PaaSManager Architecture

ll:migrateApp

[PaaS Manager API }

2:fmigrateA,
g pp —
[~—A
L —

.getAl
Management 3:9° PaaSMég Information
Resources anag Resources

4:migrateApp
5-.5\“’90

6:createApp

PaaS#1
Mgmt

9:deployApp

12:deleteApp 10:deployApp
11:getAppStatus

PaaS#1 API PaaS#2 API

Fig. 4: Migration Process

7:createApp

of applications that require persistence, such as, databases.
The limitations of such case would include the synchronizing
of data between the two PaaS providers as well as the auto-
reconfiguration of the application source code files in order to
access the newly created database. However, the PaaSManager
has a method that returns the database’s access credentials for
developers import or export data from the cloud.

4) Information Resources: The Information Resources pre-
sented in Figure [3] is a decision module that implements
methods related to acquisition of information concerning ap-

plications and databases. It also offers four PaaS adapters:
CloudBees Info, CloudFoundry Info, IronFoundry Info and
Heroku Info, which are responsible for acquiring and pro-
cessing information related to status, logs or monitoring tasks
exposed by each vendor API. This information is fundamental
for developers to manage their software and activate the
scaling or migration processes.

5) Monitoring Engine: In recent years, some studies were
conducted in cloud monitoring area aiming to define moni-
toring frameworks or metrics models for an efficient cloud
management [[10]. The metrics list is quite extensive, including
availability, response time, RAM, CPU usage, database re-
quests, threads or user sessions . However at the moment,
each PaaS provider offers different metrics and different
tools for monitoring applications. As discussed previously,
CloudBees and Heroku have partnered with NewRelic, which
is a popular Application Management Performance used in
cloud environments. On the other hand, CloudFoundry and
IronFoundry supply a monitoring operation through their na-
tive APIs. The Monitoring Engine, presented in Figure [3] was
developed in order to collect real-time metrics exhibited by
each platform. After the application has been deployed in one
of the PaaS, a background job is launched and kept alive until
the application is stopped or until it is removed. This process is
defined by a synchronous sampling performed every minute
towards the NewRelic API or the native API according to
the platform where the application is hosted. The achieved
information is then stored in the central database and can be
queried through the PaaSManager APIL

o P1
-—\A/Q‘ P
~L14n 12—
S e
P2 API P2 API
" Rl 1)
P
2 P\g\/ =% S \34/3/
V.TJJZ'/ e
——

Fig. 5: TaaS Management: the 2-way translator

B. laaS Manager

As mentioned in Section [[I} relying entirely on the success
of the PaaSM doesn’t cover all cloud customers’ needs. A
failed attempt to migrate an application to a cloud, fallbacks
to the lowest cloud layer and results in the need for carrying
out an endless low-level set of system administration tasks:
provision the virtual machine, install the operating system,
install and tweak user’s application software dependencies,
install security hardening configurations, add monitoring sup-
port, etc [[12]. These are not the optimal sysadmin actions to
be done. In our proposed solution an external entity could help
distressing the workload by brokering the relationship between
the two worlds. The TaaS Manager (IaaSM) acts as such an
external entity.

The TaaSM is composed by three public APIs: TaaS Discov-
ery Interface, JaaS Management Interface, and IaaS Functional
Interface. The use of these APIs concedes users consolidated
interfaces they can use, despite each cloud providers API
variations.

1) laaS Discovery Interface: The role of the laaS Discovery
Interface (IDI) is to bring forth all the available [aaS cloud
providers, their functionalities, geographical location, and ser-
vice fees. This implies a good entry-point to sort out which
provider best suits the customer interests.

2) laaS Management Interface: The laaS Management
Interface (IMI) unifies all IaaS providers APIs into one sin-
gle API, abstracting end-users from the differences between
clouds and so easily achieving management interoperability.
A high-level management interface will provide a full range
of operations such as create, start, stop, reboot, and terminate
instances, upload and delete images, administer public and
private IP addresses, etc. It is imperative to endorse users
whom were forced by cloud providers to use proprietary and
non-standard compliant interfaces when they moved in to the
cloud. An 2-way API translator (Figure [5) equipping users
to keep using unchanged tools against a second provider is
advisable. Because CIMI helps attain interoperability between
cloud service provider APIs and users, it is used as the
foundation for the 2-way API translator.

3) laaS Functional Interface: Once a cloud infrastructure
has been created and deployed, users can benefit from the
TaaS Functional Interface (IFI) to automate IT operations, from

software provisioning and configuration to patching. Utilizing
IFI to control how the system gets configured throughout its
lifecycle, ensures an automated rebuild of the system in case
of disasters or quickly deploys a mirror of the current system
state.

C. Cloud Service Broker

The Cloud Service Broker (CSB) is the most important com-
ponent on this architecture as it connects the PaaSM, TaaSM
and user interfaces through a Service Bus. It provides extra
high-level services that support all operation and business logic
associated to the proposed solution. While the PaaS Manager
and the IaaS Manager are self-contained, CSB orchestrates,
further augments and eases the process of deploying and
running an application in the cloud from the ground up, by
advising users which platform better matches their application
dependencies. At the same time it enables additional savings in
operational expenses by deploying the code to the chosen one,
and provisioning the proper monitoring hooks. Also through
the use of the CSB, users are qualified to effortlessly migrate
their applications from on-premises to the cloud or between
cloud providers, with as few modifications as possible. Upon
user request, the CSB will auto-scale possible computational
resources on the platforms where the application is hosted,
in order to accommodate high demand periods in a resilient
manner. After peak hour or when demand simply drops,
applications can be migrated back to its normal state, in a
lower cost cloud provider.

It is known cloud offerings can significantly differ on
supported functionality. For instance, there are PaaS services
that do not yield monitoring or logging information. Others,
while committed to assure no cloud confinement exists, it is
only possible to interoperate with another provider if they
share the same API which at present implies sharing the
exact same platform. The CSB has a database containing data
of provider capabilities, including functional, technical and
location data. This knowledge is highly import for discerning
which characteristics some providers support but others do not
and provide means to better advise users with a filtered set
of providers matching their application requirements. Section
further details and demonstrates how this data can be
used to users’ advantage.

The implementation of the CSB is not narrowed to the
greatest common denominator of functionality from supported
providers. In case of unsupported attributes from one or more
providers, the CSB does not discard those features from all
other supported providers. On the web portal, depending on
where the application was deployed to, the user will be
presented with a richer or fewer set of actions available to
their disposal.

1) Manifest and Decision-making assessment: A key com-
ponent of the system proposed is the concept of a manifest,
and its relation to users and cloud providers. A manifest is
a structured document delineating application minimal and
optimal requirements, in the form of computation, storage,
communication, and business metrics. The manifest is supplied

by the developer through the existing interfaces (web portal
or CLI). As an example, the content of a manifest can specify
that storage latency should not exceed lms, that bandwidth
required is of 100Mbits, or simply that the application should
not leave a given jurisdiction (or even the local premises).
Therefore, it effectively consists in the description of the
desired Service Level Agreement (SLA) requested to the
PaaS provider. Users create a manifest document for each
application, and submit it to the CSB. The document is
evaluated, and is used during the entire application lifetime. At
the first, it will enable the CSB to decide where to deploy the
application. Later it enables the CSB to know which metrics
must be monitored, the thresholds set by the application, and
how to react if values exceed the given thresholds. The man-
ifest response should therefore allow rating cloud offerings,
returning individual scores for each application in each PaaS
provider.

2) Deployment: Along with the source code, users are
asked to inform where the application should be deployed
to. The CSB collects the code, creates a revision control and
source code management repository and copies the data into
it. Based on the manifest, the CSB will request the creation of
databases on the desired PaaS and will replace environment
variables with the access credentials returned in a temporarily
repository, leaving untouched the code previously uploaded to
the repository. The rest of the deployment stages will occur
transparently to the end-user, taking place in the PaaS Manager
and/or the IaaS Manager. Auto redeploy of a new version to
the cloud is just a matter of the user submitting changes to
the revision control repository and the CSB will take care of
everything else from there on.

3) Monitoring and Billing: The monitoring system is of
the foremost importance to the CSB. The monitor audits
computational resources usage per application and assembles
daily, weekly and monthly reports allowing users to control
costs of operation over time and covering all supported cloud
platforms. Notifications will be sent out in case of events—
thresholds exceeded, service outages, etc. Since the broker is
a multi-tenancy framework, it will issue invoices per customer,
not per application. Monitoring is also important for the CSB
to analyze if the requirements specified in the manifest are
being fulfilled, and to rank existing providers according to the
needs of each application.

4) Migration: By leaving the source code untouched and
with the manifest stored on the CSB, future deployments to
concurrent providers will turn out to be a simplified process to
both user and broker. Users won’t need to change credentials
nor host names. They will continue to access the service
through the same domain assigned when first deployed to the
CSB. The CSB will ensure the synchronization of persistent
data without succor to a noticeable downtime period.

IV. CONCLUSION AND FUTURE WORK

With the growing number of cloud providers, the search
for the best platform to deploy and manage applications is

a critical factor and may not always lead to the best deci-
sion. This paper addresses the aforementioned inconvenients
proposing a high-level comprehensive architecture intended
to ease application lifecycle stages, such as, deployment,
management, and monitoring of cloud applications over the
two cloud models PaaS and IaaS.

The proposed CSB is a key part from the framework
by delivering and evaluating, the most appropriate platform
from a catalog of miscellaneous PaaS offerings, based on
the application profile or defined cost thresholds. However,
if the supported platforms don’t cover all the users’ needs,
the developer shall be forwarded and assist in preparing and
setting up a PaaS on demand settled on lowest cloud layer
solutions. This approach opens a bond between PaaS and TaaS
which is orchestrated via the CSB and implemented through
the outlined PaaS Manager and TaaS Manager.

An example of market players who can take advantage
of such multipurpose cloud framework are the communi-
cations service providers (CSP). With the new added-value
service providers, operators are becoming just a data-pipe
guarantying connectivity between both ends. CSPs are un-
doubtedly interested in taking a share of the growing cloud
market, setting a major position. The exploitation of two-
sided business revenues with third-parties developers toward
the management and migration of applications to private or
hybrid cloud products is a likely model.

As proof-of-concept, a first prototype of the CSB and PaaS
Manager is under development as well as the user’s web portal
and command line with Git integration. The monitoring system
for covering resources usages and costs notifications will be
tested soon for running intensive tests and benchmarks through
real applications.

ACKNOWLEDGMENT

The work hereby presented is a Portugal Telecom Inovagdo
funded project conducted under the ATNoG research group,
Instituto de Telecomunicagdes (Aveiro pole), Portugal.

REFERENCES

[11 Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, pp. 7-18, 2010, 10.1007/s13174-010-0007-6.
[Online]. Available: http://dx.doi.org/10.1007/s13174-010-0007-6

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, and M. Zaharia, “Above the
clouds: A berkeley view of cloud computing,” University of California,
Berkeley, Tech. Rep., 2009.

[3] “The nist definition of cloud computing,” |http://www.csrc.nist.gov/
publications/nistpubs/800-145/SP800-145.pdf, 2011, [Online; accessed
9 May 2012].

[4] D. Collison, “Distributed Design and Architecture of Cloud Foundry,”
http://www.slideshare.net/derekcollison/design-of-cloud-foundry, 2011,
[Online; accessed 9 May 2012].

[5] F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier, “A
Federated Multi-Cloud PaaS Infrastructure,” in 5th IEEE International
Conference on Cloud Computing. hawaii, Etats-Unis: IEEE Xplore
Digital Library, Jun. 2012. [Online]. Available: http://hal.inria.fr/
hal-00694700

[6] Z. ur Rehman, F. Hussain, and O. Hussain, “Towards multi-criteria
cloud service selection,” in Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2011 Fifth International Conference on,
30 2011-july 2 2011, pp. 44 —48.

http://dx.doi.org/10.1007/s13174-010-0007-6
http://www.csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.slideshare.net/derekcollison/design-of-cloud-foundry
http://hal.inria.fr/hal-00694700
http://hal.inria.fr/hal-00694700

[7]

[8]

[10]

(11]

[12]

J. K. J. Kang and K. M. S. K. M. Sim, “Cloudle: A multi-criteria cloud
service search engine,” pp. 339-346, 2010. [Online]. Available: http:
/lieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708589

T. Liu, Y. Katsuno, K. Sun, Y. Li, T. Kushida, Y. Chen, and M. Itakura,
“Multi cloud management for unified cloud services across cloud sites,”
in Cloud Computing and Intelligence Systems (CCIS), 2011 IEEE
International Conference on, sept. 2011, pp. 164 —169.

M. Maiya, S. Dasari, R. Yadav, S. Shivaprasad, and D. Milojicic,
“Quantifying manageability of cloud platforms,” in Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, june 2012, pp.
993 —995.

J. Shao and Q. Wang, “A performance guarantee approach for
cloud applications based on monitoring,” in Proceedings of the
2011 IEEE 35th Annual Computer Software and Applications
Conference Workshops, ser. COMPSACW ’11. Washington, DC,
USA: IEEE Computer Society, 2011, pp. 25-30. [Online]. Available:
http://dx.doi.org/10.1109/COMPSACW.2011.15

X. Cheng, S. Yuliang, and L. Qingzhong, “A multi-tenant oriented
performance monitoring, detecting and scheduling architecture based on
SLA,” in Joint Conferences on Pervasive Computing, ser. JCPC 2009.
Tamsui, Taipei: IEEE Internet Computing, 2009, pp. 599-604.

T. Wood, A. Gerber, K. K. Ramakrishnan, P. Shenoy, and J. Van der
Merwe, “The case for enterprise-ready virtual private clouds,” in
Proceedings of the 2009 conference on Hot topics in cloud computing,
ser. HotCloud’09. Berkeley, CA, USA: USENIX Association, 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855533.1855537

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708589
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5708589
http://dx.doi.org/10.1109/COMPSACW.2011.15
http://dl.acm.org/citation.cfm?id=1855533.1855537

	Introduction
	Related Work
	Proposed Architecture
	Platform as a Service Manager
	PaaSManager Architecture
	PaaSManager API
	Management Resources
	Information Resources
	Monitoring Engine

	IaaS Manager
	IaaS Discovery Interface
	IaaS Management Interface
	IaaS Functional Interface

	Cloud Service Broker
	Manifest and Decision-making assessment
	Deployment
	Monitoring and Billing
	Migration

	Conclusion and Future Work
	References

